Properties

Label 2-1440-1.1-c3-0-51
Degree $2$
Conductor $1440$
Sign $-1$
Analytic cond. $84.9627$
Root an. cond. $9.21752$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·5-s + 10.3·7-s − 57.3·11-s − 22.3·13-s + 106.·17-s − 43.7·19-s + 16.4·23-s + 25·25-s + 57.5·29-s + 175.·31-s + 51.6·35-s − 280.·37-s − 157.·41-s − 457.·43-s − 18.6·47-s − 236.·49-s − 370.·53-s − 286.·55-s − 416.·59-s + 867.·61-s − 111.·65-s − 37.8·67-s + 83.6·71-s − 12.1·73-s − 592.·77-s − 175.·79-s − 572.·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.558·7-s − 1.57·11-s − 0.475·13-s + 1.51·17-s − 0.528·19-s + 0.149·23-s + 0.200·25-s + 0.368·29-s + 1.01·31-s + 0.249·35-s − 1.24·37-s − 0.600·41-s − 1.62·43-s − 0.0578·47-s − 0.688·49-s − 0.960·53-s − 0.703·55-s − 0.918·59-s + 1.82·61-s − 0.212·65-s − 0.0690·67-s + 0.139·71-s − 0.0195·73-s − 0.877·77-s − 0.249·79-s − 0.756·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1440\)    =    \(2^{5} \cdot 3^{2} \cdot 5\)
Sign: $-1$
Analytic conductor: \(84.9627\)
Root analytic conductor: \(9.21752\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1440,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - 5T \)
good7 \( 1 - 10.3T + 343T^{2} \)
11 \( 1 + 57.3T + 1.33e3T^{2} \)
13 \( 1 + 22.3T + 2.19e3T^{2} \)
17 \( 1 - 106.T + 4.91e3T^{2} \)
19 \( 1 + 43.7T + 6.85e3T^{2} \)
23 \( 1 - 16.4T + 1.21e4T^{2} \)
29 \( 1 - 57.5T + 2.43e4T^{2} \)
31 \( 1 - 175.T + 2.97e4T^{2} \)
37 \( 1 + 280.T + 5.06e4T^{2} \)
41 \( 1 + 157.T + 6.89e4T^{2} \)
43 \( 1 + 457.T + 7.95e4T^{2} \)
47 \( 1 + 18.6T + 1.03e5T^{2} \)
53 \( 1 + 370.T + 1.48e5T^{2} \)
59 \( 1 + 416.T + 2.05e5T^{2} \)
61 \( 1 - 867.T + 2.26e5T^{2} \)
67 \( 1 + 37.8T + 3.00e5T^{2} \)
71 \( 1 - 83.6T + 3.57e5T^{2} \)
73 \( 1 + 12.1T + 3.89e5T^{2} \)
79 \( 1 + 175.T + 4.93e5T^{2} \)
83 \( 1 + 572.T + 5.71e5T^{2} \)
89 \( 1 - 622.T + 7.04e5T^{2} \)
97 \( 1 + 1.21e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.530035457335660671347475402042, −8.061573897460417842583104908360, −7.24586793390817502779695517051, −6.24006443379490506803945415717, −5.18932707492727457907114223289, −4.90377693494979912030258726224, −3.39496139058713302190351582471, −2.50291738472753237903198838970, −1.42677167007891290358703017084, 0, 1.42677167007891290358703017084, 2.50291738472753237903198838970, 3.39496139058713302190351582471, 4.90377693494979912030258726224, 5.18932707492727457907114223289, 6.24006443379490506803945415717, 7.24586793390817502779695517051, 8.061573897460417842583104908360, 8.530035457335660671347475402042

Graph of the $Z$-function along the critical line