L(s) = 1 | + 5·5-s + 10.3·7-s − 57.3·11-s − 22.3·13-s + 106.·17-s − 43.7·19-s + 16.4·23-s + 25·25-s + 57.5·29-s + 175.·31-s + 51.6·35-s − 280.·37-s − 157.·41-s − 457.·43-s − 18.6·47-s − 236.·49-s − 370.·53-s − 286.·55-s − 416.·59-s + 867.·61-s − 111.·65-s − 37.8·67-s + 83.6·71-s − 12.1·73-s − 592.·77-s − 175.·79-s − 572.·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.558·7-s − 1.57·11-s − 0.475·13-s + 1.51·17-s − 0.528·19-s + 0.149·23-s + 0.200·25-s + 0.368·29-s + 1.01·31-s + 0.249·35-s − 1.24·37-s − 0.600·41-s − 1.62·43-s − 0.0578·47-s − 0.688·49-s − 0.960·53-s − 0.703·55-s − 0.918·59-s + 1.82·61-s − 0.212·65-s − 0.0690·67-s + 0.139·71-s − 0.0195·73-s − 0.877·77-s − 0.249·79-s − 0.756·83-s + ⋯ |
Λ(s)=(=(1440s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1440s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−5T |
good | 7 | 1−10.3T+343T2 |
| 11 | 1+57.3T+1.33e3T2 |
| 13 | 1+22.3T+2.19e3T2 |
| 17 | 1−106.T+4.91e3T2 |
| 19 | 1+43.7T+6.85e3T2 |
| 23 | 1−16.4T+1.21e4T2 |
| 29 | 1−57.5T+2.43e4T2 |
| 31 | 1−175.T+2.97e4T2 |
| 37 | 1+280.T+5.06e4T2 |
| 41 | 1+157.T+6.89e4T2 |
| 43 | 1+457.T+7.95e4T2 |
| 47 | 1+18.6T+1.03e5T2 |
| 53 | 1+370.T+1.48e5T2 |
| 59 | 1+416.T+2.05e5T2 |
| 61 | 1−867.T+2.26e5T2 |
| 67 | 1+37.8T+3.00e5T2 |
| 71 | 1−83.6T+3.57e5T2 |
| 73 | 1+12.1T+3.89e5T2 |
| 79 | 1+175.T+4.93e5T2 |
| 83 | 1+572.T+5.71e5T2 |
| 89 | 1−622.T+7.04e5T2 |
| 97 | 1+1.21e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.530035457335660671347475402042, −8.061573897460417842583104908360, −7.24586793390817502779695517051, −6.24006443379490506803945415717, −5.18932707492727457907114223289, −4.90377693494979912030258726224, −3.39496139058713302190351582471, −2.50291738472753237903198838970, −1.42677167007891290358703017084, 0,
1.42677167007891290358703017084, 2.50291738472753237903198838970, 3.39496139058713302190351582471, 4.90377693494979912030258726224, 5.18932707492727457907114223289, 6.24006443379490506803945415717, 7.24586793390817502779695517051, 8.061573897460417842583104908360, 8.530035457335660671347475402042