Properties

Label 2-1440-1.1-c3-0-47
Degree $2$
Conductor $1440$
Sign $-1$
Analytic cond. $84.9627$
Root an. cond. $9.21752$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·5-s − 8·7-s − 4·11-s − 6·13-s + 2·17-s − 16·19-s + 60·23-s + 25·25-s + 142·29-s − 176·31-s − 40·35-s − 214·37-s + 278·41-s − 68·43-s − 116·47-s − 279·49-s + 350·53-s − 20·55-s − 684·59-s − 394·61-s − 30·65-s + 108·67-s + 96·71-s − 398·73-s + 32·77-s + 136·79-s − 436·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.431·7-s − 0.109·11-s − 0.128·13-s + 0.0285·17-s − 0.193·19-s + 0.543·23-s + 1/5·25-s + 0.909·29-s − 1.01·31-s − 0.193·35-s − 0.950·37-s + 1.05·41-s − 0.241·43-s − 0.360·47-s − 0.813·49-s + 0.907·53-s − 0.0490·55-s − 1.50·59-s − 0.826·61-s − 0.0572·65-s + 0.196·67-s + 0.160·71-s − 0.638·73-s + 0.0473·77-s + 0.193·79-s − 0.576·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1440\)    =    \(2^{5} \cdot 3^{2} \cdot 5\)
Sign: $-1$
Analytic conductor: \(84.9627\)
Root analytic conductor: \(9.21752\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1440,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - p T \)
good7 \( 1 + 8 T + p^{3} T^{2} \)
11 \( 1 + 4 T + p^{3} T^{2} \)
13 \( 1 + 6 T + p^{3} T^{2} \)
17 \( 1 - 2 T + p^{3} T^{2} \)
19 \( 1 + 16 T + p^{3} T^{2} \)
23 \( 1 - 60 T + p^{3} T^{2} \)
29 \( 1 - 142 T + p^{3} T^{2} \)
31 \( 1 + 176 T + p^{3} T^{2} \)
37 \( 1 + 214 T + p^{3} T^{2} \)
41 \( 1 - 278 T + p^{3} T^{2} \)
43 \( 1 + 68 T + p^{3} T^{2} \)
47 \( 1 + 116 T + p^{3} T^{2} \)
53 \( 1 - 350 T + p^{3} T^{2} \)
59 \( 1 + 684 T + p^{3} T^{2} \)
61 \( 1 + 394 T + p^{3} T^{2} \)
67 \( 1 - 108 T + p^{3} T^{2} \)
71 \( 1 - 96 T + p^{3} T^{2} \)
73 \( 1 + 398 T + p^{3} T^{2} \)
79 \( 1 - 136 T + p^{3} T^{2} \)
83 \( 1 + 436 T + p^{3} T^{2} \)
89 \( 1 - 750 T + p^{3} T^{2} \)
97 \( 1 - 82 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.914560998707932233712388363964, −7.959652385438611044154332111268, −7.05594487313866128175776368674, −6.32548120016501812629175971678, −5.46358371477024199769776913894, −4.59389700579660561897702384657, −3.46162776702748594952527898423, −2.54368728189513980580303591760, −1.37576435598610081062675045585, 0, 1.37576435598610081062675045585, 2.54368728189513980580303591760, 3.46162776702748594952527898423, 4.59389700579660561897702384657, 5.46358371477024199769776913894, 6.32548120016501812629175971678, 7.05594487313866128175776368674, 7.959652385438611044154332111268, 8.914560998707932233712388363964

Graph of the $Z$-function along the critical line