L(s) = 1 | − 5·5-s + 16·7-s − 24·11-s − 14·13-s + 18·17-s + 36·19-s − 104·23-s + 25·25-s + 250·29-s − 28·31-s − 80·35-s − 54·37-s − 354·41-s + 228·43-s − 408·47-s − 87·49-s − 262·53-s + 120·55-s + 64·59-s + 374·61-s + 70·65-s + 300·67-s − 1.01e3·71-s + 274·73-s − 384·77-s + 788·79-s + 396·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 0.863·7-s − 0.657·11-s − 0.298·13-s + 0.256·17-s + 0.434·19-s − 0.942·23-s + 1/5·25-s + 1.60·29-s − 0.162·31-s − 0.386·35-s − 0.239·37-s − 1.34·41-s + 0.808·43-s − 1.26·47-s − 0.253·49-s − 0.679·53-s + 0.294·55-s + 0.141·59-s + 0.785·61-s + 0.133·65-s + 0.547·67-s − 1.69·71-s + 0.439·73-s − 0.568·77-s + 1.12·79-s + 0.523·83-s + ⋯ |
Λ(s)=(=(1440s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1440s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+pT |
good | 7 | 1−16T+p3T2 |
| 11 | 1+24T+p3T2 |
| 13 | 1+14T+p3T2 |
| 17 | 1−18T+p3T2 |
| 19 | 1−36T+p3T2 |
| 23 | 1+104T+p3T2 |
| 29 | 1−250T+p3T2 |
| 31 | 1+28T+p3T2 |
| 37 | 1+54T+p3T2 |
| 41 | 1+354T+p3T2 |
| 43 | 1−228T+p3T2 |
| 47 | 1+408T+p3T2 |
| 53 | 1+262T+p3T2 |
| 59 | 1−64T+p3T2 |
| 61 | 1−374T+p3T2 |
| 67 | 1−300T+p3T2 |
| 71 | 1+1016T+p3T2 |
| 73 | 1−274T+p3T2 |
| 79 | 1−788T+p3T2 |
| 83 | 1−396T+p3T2 |
| 89 | 1+786T+p3T2 |
| 97 | 1+1086T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.467329379983277083320153500468, −8.069973264472887356272052356758, −7.29392201834200258595744675797, −6.32941905717651427389945483809, −5.22175418206935184668768722913, −4.66991757526515338218738024816, −3.56719507961430006996569248390, −2.50753651099500834346477758792, −1.33999268779207022759395489012, 0,
1.33999268779207022759395489012, 2.50753651099500834346477758792, 3.56719507961430006996569248390, 4.66991757526515338218738024816, 5.22175418206935184668768722913, 6.32941905717651427389945483809, 7.29392201834200258595744675797, 8.069973264472887356272052356758, 8.467329379983277083320153500468