L(s) = 1 | + 5·5-s + 8·7-s + 4·11-s − 6·13-s + 2·17-s + 16·19-s − 60·23-s + 25·25-s + 142·29-s + 176·31-s + 40·35-s − 214·37-s + 278·41-s + 68·43-s + 116·47-s − 279·49-s + 350·53-s + 20·55-s + 684·59-s − 394·61-s − 30·65-s − 108·67-s − 96·71-s − 398·73-s + 32·77-s − 136·79-s + 436·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.431·7-s + 0.109·11-s − 0.128·13-s + 0.0285·17-s + 0.193·19-s − 0.543·23-s + 1/5·25-s + 0.909·29-s + 1.01·31-s + 0.193·35-s − 0.950·37-s + 1.05·41-s + 0.241·43-s + 0.360·47-s − 0.813·49-s + 0.907·53-s + 0.0490·55-s + 1.50·59-s − 0.826·61-s − 0.0572·65-s − 0.196·67-s − 0.160·71-s − 0.638·73-s + 0.0473·77-s − 0.193·79-s + 0.576·83-s + ⋯ |
Λ(s)=(=(1440s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1440s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.551123183 |
L(21) |
≈ |
2.551123183 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−pT |
good | 7 | 1−8T+p3T2 |
| 11 | 1−4T+p3T2 |
| 13 | 1+6T+p3T2 |
| 17 | 1−2T+p3T2 |
| 19 | 1−16T+p3T2 |
| 23 | 1+60T+p3T2 |
| 29 | 1−142T+p3T2 |
| 31 | 1−176T+p3T2 |
| 37 | 1+214T+p3T2 |
| 41 | 1−278T+p3T2 |
| 43 | 1−68T+p3T2 |
| 47 | 1−116T+p3T2 |
| 53 | 1−350T+p3T2 |
| 59 | 1−684T+p3T2 |
| 61 | 1+394T+p3T2 |
| 67 | 1+108T+p3T2 |
| 71 | 1+96T+p3T2 |
| 73 | 1+398T+p3T2 |
| 79 | 1+136T+p3T2 |
| 83 | 1−436T+p3T2 |
| 89 | 1−750T+p3T2 |
| 97 | 1−82T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.131768526814424120851624440208, −8.396605074421235903446078454751, −7.59221297714023975808421267711, −6.67765118949623631963326555762, −5.87391649775497196484658335616, −4.99185961046917821845735536783, −4.14289445596208043436685320015, −2.94638384658623576411236088630, −1.94546405213263710566367196803, −0.804821176280024084810123713662,
0.804821176280024084810123713662, 1.94546405213263710566367196803, 2.94638384658623576411236088630, 4.14289445596208043436685320015, 4.99185961046917821845735536783, 5.87391649775497196484658335616, 6.67765118949623631963326555762, 7.59221297714023975808421267711, 8.396605074421235903446078454751, 9.131768526814424120851624440208