Properties

Label 2-1440-1.1-c3-0-19
Degree $2$
Conductor $1440$
Sign $1$
Analytic cond. $84.9627$
Root an. cond. $9.21752$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·5-s + 8·7-s + 4·11-s − 6·13-s + 2·17-s + 16·19-s − 60·23-s + 25·25-s + 142·29-s + 176·31-s + 40·35-s − 214·37-s + 278·41-s + 68·43-s + 116·47-s − 279·49-s + 350·53-s + 20·55-s + 684·59-s − 394·61-s − 30·65-s − 108·67-s − 96·71-s − 398·73-s + 32·77-s − 136·79-s + 436·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.431·7-s + 0.109·11-s − 0.128·13-s + 0.0285·17-s + 0.193·19-s − 0.543·23-s + 1/5·25-s + 0.909·29-s + 1.01·31-s + 0.193·35-s − 0.950·37-s + 1.05·41-s + 0.241·43-s + 0.360·47-s − 0.813·49-s + 0.907·53-s + 0.0490·55-s + 1.50·59-s − 0.826·61-s − 0.0572·65-s − 0.196·67-s − 0.160·71-s − 0.638·73-s + 0.0473·77-s − 0.193·79-s + 0.576·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1440 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1440\)    =    \(2^{5} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(84.9627\)
Root analytic conductor: \(9.21752\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1440,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.551123183\)
\(L(\frac12)\) \(\approx\) \(2.551123183\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - p T \)
good7 \( 1 - 8 T + p^{3} T^{2} \)
11 \( 1 - 4 T + p^{3} T^{2} \)
13 \( 1 + 6 T + p^{3} T^{2} \)
17 \( 1 - 2 T + p^{3} T^{2} \)
19 \( 1 - 16 T + p^{3} T^{2} \)
23 \( 1 + 60 T + p^{3} T^{2} \)
29 \( 1 - 142 T + p^{3} T^{2} \)
31 \( 1 - 176 T + p^{3} T^{2} \)
37 \( 1 + 214 T + p^{3} T^{2} \)
41 \( 1 - 278 T + p^{3} T^{2} \)
43 \( 1 - 68 T + p^{3} T^{2} \)
47 \( 1 - 116 T + p^{3} T^{2} \)
53 \( 1 - 350 T + p^{3} T^{2} \)
59 \( 1 - 684 T + p^{3} T^{2} \)
61 \( 1 + 394 T + p^{3} T^{2} \)
67 \( 1 + 108 T + p^{3} T^{2} \)
71 \( 1 + 96 T + p^{3} T^{2} \)
73 \( 1 + 398 T + p^{3} T^{2} \)
79 \( 1 + 136 T + p^{3} T^{2} \)
83 \( 1 - 436 T + p^{3} T^{2} \)
89 \( 1 - 750 T + p^{3} T^{2} \)
97 \( 1 - 82 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.131768526814424120851624440208, −8.396605074421235903446078454751, −7.59221297714023975808421267711, −6.67765118949623631963326555762, −5.87391649775497196484658335616, −4.99185961046917821845735536783, −4.14289445596208043436685320015, −2.94638384658623576411236088630, −1.94546405213263710566367196803, −0.804821176280024084810123713662, 0.804821176280024084810123713662, 1.94546405213263710566367196803, 2.94638384658623576411236088630, 4.14289445596208043436685320015, 4.99185961046917821845735536783, 5.87391649775497196484658335616, 6.67765118949623631963326555762, 7.59221297714023975808421267711, 8.396605074421235903446078454751, 9.131768526814424120851624440208

Graph of the $Z$-function along the critical line