L(s) = 1 | + 5·5-s + 1.74·7-s − 28.9·11-s − 48.2·13-s − 16.2·17-s − 130.·19-s + 182.·23-s + 25·25-s − 291.·29-s + 219.·31-s + 8.73·35-s + 436.·37-s + 339.·41-s + 316.·43-s − 335.·47-s − 339.·49-s + 520.·53-s − 144.·55-s + 589.·59-s − 566.·61-s − 241.·65-s + 407.·67-s + 486.·71-s + 143.·73-s − 50.6·77-s + 968.·79-s − 532.·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.0943·7-s − 0.794·11-s − 1.02·13-s − 0.231·17-s − 1.57·19-s + 1.65·23-s + 0.200·25-s − 1.86·29-s + 1.27·31-s + 0.0422·35-s + 1.93·37-s + 1.29·41-s + 1.12·43-s − 1.04·47-s − 0.991·49-s + 1.34·53-s − 0.355·55-s + 1.30·59-s − 1.18·61-s − 0.460·65-s + 0.742·67-s + 0.812·71-s + 0.229·73-s − 0.0749·77-s + 1.37·79-s − 0.704·83-s + ⋯ |
Λ(s)=(=(1440s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1440s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.838918477 |
L(21) |
≈ |
1.838918477 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−5T |
good | 7 | 1−1.74T+343T2 |
| 11 | 1+28.9T+1.33e3T2 |
| 13 | 1+48.2T+2.19e3T2 |
| 17 | 1+16.2T+4.91e3T2 |
| 19 | 1+130.T+6.85e3T2 |
| 23 | 1−182.T+1.21e4T2 |
| 29 | 1+291.T+2.43e4T2 |
| 31 | 1−219.T+2.97e4T2 |
| 37 | 1−436.T+5.06e4T2 |
| 41 | 1−339.T+6.89e4T2 |
| 43 | 1−316.T+7.95e4T2 |
| 47 | 1+335.T+1.03e5T2 |
| 53 | 1−520.T+1.48e5T2 |
| 59 | 1−589.T+2.05e5T2 |
| 61 | 1+566.T+2.26e5T2 |
| 67 | 1−407.T+3.00e5T2 |
| 71 | 1−486.T+3.57e5T2 |
| 73 | 1−143.T+3.89e5T2 |
| 79 | 1−968.T+4.93e5T2 |
| 83 | 1+532.T+5.71e5T2 |
| 89 | 1+67.8T+7.04e5T2 |
| 97 | 1−218.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.308512139555393232182662598428, −8.327354213251203685812491872786, −7.56927378934543411240532753381, −6.73298807393961043426792631396, −5.84036727135581625349582303971, −4.97389523542831345951528206394, −4.21224768658033662536849521249, −2.78005104036952292404722075943, −2.15220079774395696503825157241, −0.64710079732116236320918425889,
0.64710079732116236320918425889, 2.15220079774395696503825157241, 2.78005104036952292404722075943, 4.21224768658033662536849521249, 4.97389523542831345951528206394, 5.84036727135581625349582303971, 6.73298807393961043426792631396, 7.56927378934543411240532753381, 8.327354213251203685812491872786, 9.308512139555393232182662598428