L(s) = 1 | + (−0.5 − 0.866i)2-s + (1.13 + 1.95i)3-s + (0.500 − 0.866i)4-s + 2.11·5-s + (1.13 − 1.95i)6-s + (−1.68 + 2.92i)7-s − 3·8-s + (−1.05 + 1.83i)9-s + (−1.05 − 1.83i)10-s + (−0.5 − 0.866i)11-s + 2.26·12-s + (2.63 − 2.46i)13-s + 3.37·14-s + (2.39 + 4.14i)15-s + (0.500 + 0.866i)16-s + (1.07 − 1.85i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.652 + 1.13i)3-s + (0.250 − 0.433i)4-s + 0.946·5-s + (0.461 − 0.799i)6-s + (−0.638 + 1.10i)7-s − 1.06·8-s + (−0.352 + 0.610i)9-s + (−0.334 − 0.579i)10-s + (−0.150 − 0.261i)11-s + 0.652·12-s + (0.729 − 0.683i)13-s + 0.902·14-s + (0.617 + 1.07i)15-s + (0.125 + 0.216i)16-s + (0.260 − 0.450i)17-s + ⋯ |
Λ(s)=(=(143s/2ΓC(s)L(s)(0.999+0.0260i)Λ(2−s)
Λ(s)=(=(143s/2ΓC(s+1/2)L(s)(0.999+0.0260i)Λ(1−s)
Degree: |
2 |
Conductor: |
143
= 11⋅13
|
Sign: |
0.999+0.0260i
|
Analytic conductor: |
1.14186 |
Root analytic conductor: |
1.06857 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ143(133,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 143, ( :1/2), 0.999+0.0260i)
|
Particular Values
L(1) |
≈ |
1.24720−0.0162425i |
L(21) |
≈ |
1.24720−0.0162425i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(0.5+0.866i)T |
| 13 | 1+(−2.63+2.46i)T |
good | 2 | 1+(0.5+0.866i)T+(−1+1.73i)T2 |
| 3 | 1+(−1.13−1.95i)T+(−1.5+2.59i)T2 |
| 5 | 1−2.11T+5T2 |
| 7 | 1+(1.68−2.92i)T+(−3.5−6.06i)T2 |
| 17 | 1+(−1.07+1.85i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.57−2.72i)T+(−9.5−16.4i)T2 |
| 23 | 1+(2.26+3.91i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.74+3.02i)T+(−14.5+25.1i)T2 |
| 31 | 1+9.27T+31T2 |
| 37 | 1+(−4.58−7.93i)T+(−18.5+32.0i)T2 |
| 41 | 1+(5.00+8.67i)T+(−20.5+35.5i)T2 |
| 43 | 1+(1.26−2.18i)T+(−21.5−37.2i)T2 |
| 47 | 1+1.96T+47T2 |
| 53 | 1−7.75T+53T2 |
| 59 | 1+(−3.01+5.22i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4.89−8.47i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.01+3.49i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3−5.19i)T+(−35.5−61.4i)T2 |
| 73 | 1−10.8T+73T2 |
| 79 | 1−1.66T+79T2 |
| 83 | 1−5.66T+83T2 |
| 89 | 1+(4.67+8.09i)T+(−44.5+77.0i)T2 |
| 97 | 1+(5.81−10.0i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.07728644627150474865954980049, −11.94502336539938344143777531956, −10.64326736106762772841209177549, −9.978352392356170454569750475560, −9.295529600099973644716534589588, −8.515584839735123468232951653704, −6.20895283757061120201073575440, −5.47163819326285002074482755230, −3.43047573360283080482015223790, −2.29811509604988134280733902110,
1.93613738260217822756478514708, 3.58607817370604768313869934116, 6.02524244471339962690809683317, 6.93691400583185174337922837809, 7.57231993618432392855634410253, 8.740898625700242982666304028379, 9.713359903749772567673275696364, 11.08970174697276790983912334354, 12.55959240627443526701704241307, 13.25530523283608866065164338213