L(s) = 1 | + (−0.690 + 2.12i)2-s + (−1 + 0.726i)3-s + (−2.42 − 1.76i)4-s + (−1 − 3.07i)5-s + (−0.854 − 2.62i)6-s + (−3.11 − 2.26i)7-s + (1.80 − 1.31i)8-s + (−0.454 + 1.40i)9-s + 7.23·10-s + (−2.80 + 1.76i)11-s + 3.70·12-s + (−0.309 + 0.951i)13-s + (6.97 − 5.06i)14-s + (3.23 + 2.35i)15-s + (−0.309 − 0.951i)16-s + (1.42 + 4.39i)17-s + ⋯ |
L(s) = 1 | + (−0.488 + 1.50i)2-s + (−0.577 + 0.419i)3-s + (−1.21 − 0.881i)4-s + (−0.447 − 1.37i)5-s + (−0.348 − 1.07i)6-s + (−1.17 − 0.856i)7-s + (0.639 − 0.464i)8-s + (−0.151 + 0.466i)9-s + 2.28·10-s + (−0.846 + 0.531i)11-s + 1.07·12-s + (−0.0857 + 0.263i)13-s + (1.86 − 1.35i)14-s + (0.835 + 0.607i)15-s + (−0.0772 − 0.237i)16-s + (0.346 + 1.06i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0219 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0219 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (2.80 - 1.76i)T \) |
| 13 | \( 1 + (0.309 - 0.951i)T \) |
good | 2 | \( 1 + (0.690 - 2.12i)T + (-1.61 - 1.17i)T^{2} \) |
| 3 | \( 1 + (1 - 0.726i)T + (0.927 - 2.85i)T^{2} \) |
| 5 | \( 1 + (1 + 3.07i)T + (-4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (3.11 + 2.26i)T + (2.16 + 6.65i)T^{2} \) |
| 17 | \( 1 + (-1.42 - 4.39i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-1.30 + 0.951i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + 8T + 23T^{2} \) |
| 29 | \( 1 + (-4.54 - 3.30i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-1.73 + 5.34i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (3.23 + 2.35i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 4T + 43T^{2} \) |
| 47 | \( 1 + (5.11 - 3.71i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (-0.0278 + 0.0857i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-7.78 - 5.65i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (2.26 + 6.96i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + 1.52T + 67T^{2} \) |
| 71 | \( 1 + (3.57 + 10.9i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (4.61 + 3.35i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (0.618 - 1.90i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-2.5 - 7.69i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + 15.4T + 89T^{2} \) |
| 97 | \( 1 + (3 - 9.23i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.02244456563924544141036695060, −12.02783708263260010778503980859, −10.35808391585397818107306726458, −9.645238451210748968974228860063, −8.351229755541325716895946892527, −7.65387794163343579744496847158, −6.32356916747566828690487028139, −5.26480915765938364689342917299, −4.25664026846416745491321257787, 0,
2.74549194341052999066172274411, 3.35705465812046926959906764985, 5.86147924833774241363835686485, 6.88104661188039067235436767130, 8.402204113829066560864920809739, 9.806519314156690840102396892248, 10.33454093666401445333007066333, 11.59825093230925005584423692050, 11.90969529156266189687814681559