| L(s) = 1 | + (0.342 + 0.939i)3-s + (−0.173 − 0.984i)4-s + (1.32 − 0.766i)7-s + (−0.766 + 0.642i)9-s + (0.866 − 0.5i)12-s + (0.642 − 1.76i)13-s + (−0.939 + 0.342i)16-s − 19-s + (1.17 + 0.984i)21-s + (−0.866 − 0.500i)27-s + (−0.984 − 1.17i)28-s + (−0.173 − 0.300i)31-s + (0.766 + 0.642i)36-s + 1.53i·37-s + 1.87·39-s + ⋯ |
| L(s) = 1 | + (0.342 + 0.939i)3-s + (−0.173 − 0.984i)4-s + (1.32 − 0.766i)7-s + (−0.766 + 0.642i)9-s + (0.866 − 0.5i)12-s + (0.642 − 1.76i)13-s + (−0.939 + 0.342i)16-s − 19-s + (1.17 + 0.984i)21-s + (−0.866 − 0.500i)27-s + (−0.984 − 1.17i)28-s + (−0.173 − 0.300i)31-s + (0.766 + 0.642i)36-s + 1.53i·37-s + 1.87·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.383i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.383i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.289448550\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.289448550\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-0.342 - 0.939i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + T \) |
| good | 2 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 7 | \( 1 + (-1.32 + 0.766i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.642 + 1.76i)T + (-0.766 - 0.642i)T^{2} \) |
| 17 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 23 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 31 | \( 1 + (0.173 + 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - 1.53iT - T^{2} \) |
| 41 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + (-1.85 - 0.326i)T + (0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 53 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 59 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 61 | \( 1 + (-0.266 - 1.50i)T + (-0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (-0.223 - 0.266i)T + (-0.173 + 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 73 | \( 1 + (-0.118 - 0.326i)T + (-0.766 + 0.642i)T^{2} \) |
| 79 | \( 1 + (1.76 - 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 97 | \( 1 + (-0.642 + 0.766i)T + (-0.173 - 0.984i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.951031388203659479647415050830, −8.811592276102201786799494536638, −8.277616417483653464195413261884, −7.49889616360573942515014402925, −6.10692170557083598555366417447, −5.39139280947006171747344930594, −4.62982346198203930501050630781, −3.92732261670760262799868793213, −2.58234361727971328639299373687, −1.16977377409637096445597600895,
1.78739416163968927083805523198, 2.40431795525876931228397325740, 3.79326287740613596802343478927, 4.57680988653292289926820658736, 5.80254919176894349916390669421, 6.72545146721745990192899685648, 7.48849127150112623977900675723, 8.227722059626154872372445121732, 8.872959308688115503655357420316, 9.190173935719075480552528696523