L(s) = 1 | + 2·2-s − 3·3-s − 4·4-s − 6·6-s − 9·7-s − 24·8-s + 9·9-s − 62·11-s + 12·12-s + 38·13-s − 18·14-s − 16·16-s − 76·17-s + 18·18-s − 19·19-s + 27·21-s − 124·22-s − 42·23-s + 72·24-s + 76·26-s − 27·27-s + 36·28-s − 259·29-s − 120·31-s + 160·32-s + 186·33-s − 152·34-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.408·6-s − 0.485·7-s − 1.06·8-s + 1/3·9-s − 1.69·11-s + 0.288·12-s + 0.810·13-s − 0.343·14-s − 1/4·16-s − 1.08·17-s + 0.235·18-s − 0.229·19-s + 0.280·21-s − 1.20·22-s − 0.380·23-s + 0.612·24-s + 0.573·26-s − 0.192·27-s + 0.242·28-s − 1.65·29-s − 0.695·31-s + 0.883·32-s + 0.981·33-s − 0.766·34-s + ⋯ |
Λ(s)=(=(1425s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1425s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.5730408532 |
L(21) |
≈ |
0.5730408532 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+pT |
| 5 | 1 |
| 19 | 1+pT |
good | 2 | 1−pT+p3T2 |
| 7 | 1+9T+p3T2 |
| 11 | 1+62T+p3T2 |
| 13 | 1−38T+p3T2 |
| 17 | 1+76T+p3T2 |
| 23 | 1+42T+p3T2 |
| 29 | 1+259T+p3T2 |
| 31 | 1+120T+p3T2 |
| 37 | 1+230T+p3T2 |
| 41 | 1−455T+p3T2 |
| 43 | 1+340T+p3T2 |
| 47 | 1−224T+p3T2 |
| 53 | 1+61T+p3T2 |
| 59 | 1+119T+p3T2 |
| 61 | 1+113T+p3T2 |
| 67 | 1−468T+p3T2 |
| 71 | 1−995T+p3T2 |
| 73 | 1+271T+p3T2 |
| 79 | 1−318T+p3T2 |
| 83 | 1+336T+p3T2 |
| 89 | 1+945T+p3T2 |
| 97 | 1+872T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.200795026022793614075558243087, −8.409332455480086391465421255786, −7.47348356562674349305741938051, −6.42662326066186907476637869528, −5.69131685762520598111492908644, −5.09025681971480093379575772422, −4.14188933233335416567245987334, −3.31087857950875263797390348587, −2.12664951939184642648332641991, −0.32764376110764048234043855525,
0.32764376110764048234043855525, 2.12664951939184642648332641991, 3.31087857950875263797390348587, 4.14188933233335416567245987334, 5.09025681971480093379575772422, 5.69131685762520598111492908644, 6.42662326066186907476637869528, 7.47348356562674349305741938051, 8.409332455480086391465421255786, 9.200795026022793614075558243087