Properties

Label 2-1425-1.1-c3-0-7
Degree $2$
Conductor $1425$
Sign $1$
Analytic cond. $84.0777$
Root an. cond. $9.16939$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3·3-s − 4·4-s − 6·6-s − 9·7-s − 24·8-s + 9·9-s − 62·11-s + 12·12-s + 38·13-s − 18·14-s − 16·16-s − 76·17-s + 18·18-s − 19·19-s + 27·21-s − 124·22-s − 42·23-s + 72·24-s + 76·26-s − 27·27-s + 36·28-s − 259·29-s − 120·31-s + 160·32-s + 186·33-s − 152·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 1/2·4-s − 0.408·6-s − 0.485·7-s − 1.06·8-s + 1/3·9-s − 1.69·11-s + 0.288·12-s + 0.810·13-s − 0.343·14-s − 1/4·16-s − 1.08·17-s + 0.235·18-s − 0.229·19-s + 0.280·21-s − 1.20·22-s − 0.380·23-s + 0.612·24-s + 0.573·26-s − 0.192·27-s + 0.242·28-s − 1.65·29-s − 0.695·31-s + 0.883·32-s + 0.981·33-s − 0.766·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1425 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1425\)    =    \(3 \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(84.0777\)
Root analytic conductor: \(9.16939\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1425,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5730408532\)
\(L(\frac12)\) \(\approx\) \(0.5730408532\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p T \)
5 \( 1 \)
19 \( 1 + p T \)
good2 \( 1 - p T + p^{3} T^{2} \)
7 \( 1 + 9 T + p^{3} T^{2} \)
11 \( 1 + 62 T + p^{3} T^{2} \)
13 \( 1 - 38 T + p^{3} T^{2} \)
17 \( 1 + 76 T + p^{3} T^{2} \)
23 \( 1 + 42 T + p^{3} T^{2} \)
29 \( 1 + 259 T + p^{3} T^{2} \)
31 \( 1 + 120 T + p^{3} T^{2} \)
37 \( 1 + 230 T + p^{3} T^{2} \)
41 \( 1 - 455 T + p^{3} T^{2} \)
43 \( 1 + 340 T + p^{3} T^{2} \)
47 \( 1 - 224 T + p^{3} T^{2} \)
53 \( 1 + 61 T + p^{3} T^{2} \)
59 \( 1 + 119 T + p^{3} T^{2} \)
61 \( 1 + 113 T + p^{3} T^{2} \)
67 \( 1 - 468 T + p^{3} T^{2} \)
71 \( 1 - 995 T + p^{3} T^{2} \)
73 \( 1 + 271 T + p^{3} T^{2} \)
79 \( 1 - 318 T + p^{3} T^{2} \)
83 \( 1 + 336 T + p^{3} T^{2} \)
89 \( 1 + 945 T + p^{3} T^{2} \)
97 \( 1 + 872 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.200795026022793614075558243087, −8.409332455480086391465421255786, −7.47348356562674349305741938051, −6.42662326066186907476637869528, −5.69131685762520598111492908644, −5.09025681971480093379575772422, −4.14188933233335416567245987334, −3.31087857950875263797390348587, −2.12664951939184642648332641991, −0.32764376110764048234043855525, 0.32764376110764048234043855525, 2.12664951939184642648332641991, 3.31087857950875263797390348587, 4.14188933233335416567245987334, 5.09025681971480093379575772422, 5.69131685762520598111492908644, 6.42662326066186907476637869528, 7.47348356562674349305741938051, 8.409332455480086391465421255786, 9.200795026022793614075558243087

Graph of the $Z$-function along the critical line