L(s) = 1 | − 2-s − 3·3-s − 7·4-s + 3·6-s + 4·7-s + 15·8-s + 9·9-s − 68·11-s + 21·12-s − 82·13-s − 4·14-s + 41·16-s − 86·17-s − 9·18-s + 19·19-s − 12·21-s + 68·22-s + 18·23-s − 45·24-s + 82·26-s − 27·27-s − 28·28-s + 30·29-s − 298·31-s − 161·32-s + 204·33-s + 86·34-s + ⋯ |
L(s) = 1 | − 0.353·2-s − 0.577·3-s − 7/8·4-s + 0.204·6-s + 0.215·7-s + 0.662·8-s + 1/3·9-s − 1.86·11-s + 0.505·12-s − 1.74·13-s − 0.0763·14-s + 0.640·16-s − 1.22·17-s − 0.117·18-s + 0.229·19-s − 0.124·21-s + 0.658·22-s + 0.163·23-s − 0.382·24-s + 0.618·26-s − 0.192·27-s − 0.188·28-s + 0.192·29-s − 1.72·31-s − 0.889·32-s + 1.07·33-s + 0.433·34-s + ⋯ |
Λ(s)=(=(1425s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1425s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+pT |
| 5 | 1 |
| 19 | 1−pT |
good | 2 | 1+T+p3T2 |
| 7 | 1−4T+p3T2 |
| 11 | 1+68T+p3T2 |
| 13 | 1+82T+p3T2 |
| 17 | 1+86T+p3T2 |
| 23 | 1−18T+p3T2 |
| 29 | 1−30T+p3T2 |
| 31 | 1+298T+p3T2 |
| 37 | 1−34T+p3T2 |
| 41 | 1−52T+p3T2 |
| 43 | 1+482T+p3T2 |
| 47 | 1−114T+p3T2 |
| 53 | 1+362T+p3T2 |
| 59 | 1+210T+p3T2 |
| 61 | 1+718T+p3T2 |
| 67 | 1−904T+p3T2 |
| 71 | 1+988T+p3T2 |
| 73 | 1−488T+p3T2 |
| 79 | 1+530T+p3T2 |
| 83 | 1+1032T+p3T2 |
| 89 | 1+880T+p3T2 |
| 97 | 1+246T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.303904225435382578141588312731, −7.63658211570533949103562651216, −6.95737333029022808985019818402, −5.55685281590411326916815134504, −4.99920887032309436520352025308, −4.43597035256288652302310283057, −2.95275784224818347832220648653, −1.82295564005590077081690964400, 0, 0,
1.82295564005590077081690964400, 2.95275784224818347832220648653, 4.43597035256288652302310283057, 4.99920887032309436520352025308, 5.55685281590411326916815134504, 6.95737333029022808985019818402, 7.63658211570533949103562651216, 8.303904225435382578141588312731