Properties

Label 2-1425-1.1-c1-0-6
Degree $2$
Conductor $1425$
Sign $1$
Analytic cond. $11.3786$
Root an. cond. $3.37323$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4-s − 6-s − 4·7-s + 3·8-s + 9-s + 4·11-s − 12-s − 2·13-s + 4·14-s − 16-s − 2·17-s − 18-s − 19-s − 4·21-s − 4·22-s + 4·23-s + 3·24-s + 2·26-s + 27-s + 4·28-s − 2·29-s − 5·32-s + 4·33-s + 2·34-s − 36-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.408·6-s − 1.51·7-s + 1.06·8-s + 1/3·9-s + 1.20·11-s − 0.288·12-s − 0.554·13-s + 1.06·14-s − 1/4·16-s − 0.485·17-s − 0.235·18-s − 0.229·19-s − 0.872·21-s − 0.852·22-s + 0.834·23-s + 0.612·24-s + 0.392·26-s + 0.192·27-s + 0.755·28-s − 0.371·29-s − 0.883·32-s + 0.696·33-s + 0.342·34-s − 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1425\)    =    \(3 \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(11.3786\)
Root analytic conductor: \(3.37323\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1425,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9700651033\)
\(L(\frac12)\) \(\approx\) \(0.9700651033\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 + T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 14 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.456957912327740145299523356238, −8.942236798090976512890571214951, −8.204261797095146615633952733135, −7.02357868670760652523158856931, −6.70552074711622254156145782215, −5.38607911495288050360483967057, −4.17893424077245633552095753386, −3.54490000396289616314690825839, −2.29629701215321469443462239002, −0.76854595244344636007624940810, 0.76854595244344636007624940810, 2.29629701215321469443462239002, 3.54490000396289616314690825839, 4.17893424077245633552095753386, 5.38607911495288050360483967057, 6.70552074711622254156145782215, 7.02357868670760652523158856931, 8.204261797095146615633952733135, 8.942236798090976512890571214951, 9.456957912327740145299523356238

Graph of the $Z$-function along the critical line