L(s) = 1 | − 2-s + 3-s − 4-s − 6-s − 4·7-s + 3·8-s + 9-s + 4·11-s − 12-s − 2·13-s + 4·14-s − 16-s − 2·17-s − 18-s − 19-s − 4·21-s − 4·22-s + 4·23-s + 3·24-s + 2·26-s + 27-s + 4·28-s − 2·29-s − 5·32-s + 4·33-s + 2·34-s − 36-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.408·6-s − 1.51·7-s + 1.06·8-s + 1/3·9-s + 1.20·11-s − 0.288·12-s − 0.554·13-s + 1.06·14-s − 1/4·16-s − 0.485·17-s − 0.235·18-s − 0.229·19-s − 0.872·21-s − 0.852·22-s + 0.834·23-s + 0.612·24-s + 0.392·26-s + 0.192·27-s + 0.755·28-s − 0.371·29-s − 0.883·32-s + 0.696·33-s + 0.342·34-s − 1/6·36-s + ⋯ |
Λ(s)=(=(1425s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1425s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9700651033 |
L(21) |
≈ |
0.9700651033 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 5 | 1 |
| 19 | 1+T |
good | 2 | 1+T+pT2 |
| 7 | 1+4T+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+2T+pT2 |
| 23 | 1−4T+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1+pT2 |
| 37 | 1−6T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1−12T+pT2 |
| 53 | 1−14T+pT2 |
| 59 | 1−4T+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−14T+pT2 |
| 79 | 1−16T+pT2 |
| 83 | 1+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.456957912327740145299523356238, −8.942236798090976512890571214951, −8.204261797095146615633952733135, −7.02357868670760652523158856931, −6.70552074711622254156145782215, −5.38607911495288050360483967057, −4.17893424077245633552095753386, −3.54490000396289616314690825839, −2.29629701215321469443462239002, −0.76854595244344636007624940810,
0.76854595244344636007624940810, 2.29629701215321469443462239002, 3.54490000396289616314690825839, 4.17893424077245633552095753386, 5.38607911495288050360483967057, 6.70552074711622254156145782215, 7.02357868670760652523158856931, 8.204261797095146615633952733135, 8.942236798090976512890571214951, 9.456957912327740145299523356238