L(s) = 1 | + (−1.36 + 0.366i)2-s + (0.684 − 2.55i)3-s + (1.73 − i)4-s + (2.23 + 0.133i)5-s + 3.74i·6-s + (−2.55 − 0.684i)7-s + (−1.99 + 2i)8-s + (−3.46 − 2i)9-s + (−3.09 + 0.633i)10-s + (3.24 − 1.87i)11-s + (−1.36 − 5.11i)12-s + (−2 + 2i)13-s + 3.74·14-s + (1.87 − 5.61i)15-s + (1.99 − 3.46i)16-s + (0.732 − 2.73i)17-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.395 − 1.47i)3-s + (0.866 − 0.5i)4-s + (0.998 + 0.0599i)5-s + 1.52i·6-s + (−0.965 − 0.258i)7-s + (−0.707 + 0.707i)8-s + (−1.15 − 0.666i)9-s + (−0.979 + 0.200i)10-s + (0.977 − 0.564i)11-s + (−0.395 − 1.47i)12-s + (−0.554 + 0.554i)13-s + 0.999·14-s + (0.483 − 1.44i)15-s + (0.499 − 0.866i)16-s + (0.177 − 0.662i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.290 + 0.956i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.290 + 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.709030 - 0.525482i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.709030 - 0.525482i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 - 0.366i)T \) |
| 5 | \( 1 + (-2.23 - 0.133i)T \) |
| 7 | \( 1 + (2.55 + 0.684i)T \) |
good | 3 | \( 1 + (-0.684 + 2.55i)T + (-2.59 - 1.5i)T^{2} \) |
| 11 | \( 1 + (-3.24 + 1.87i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2 - 2i)T - 13iT^{2} \) |
| 17 | \( 1 + (-0.732 + 2.73i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (1.87 - 3.24i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.55 + 0.684i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 - 3iT - 29T^{2} \) |
| 31 | \( 1 + (6.48 - 3.74i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 - 3T + 41T^{2} \) |
| 43 | \( 1 + (-5.61 - 5.61i)T + 43iT^{2} \) |
| 47 | \( 1 + (-2.73 - 10.2i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-6.83 - 1.83i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (1.87 + 3.24i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.5 + 2.59i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (12.7 + 3.42i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 - 3.74iT - 71T^{2} \) |
| 73 | \( 1 + (2.73 + 0.732i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-1.87 + 3.24i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.87 + 1.87i)T + 83iT^{2} \) |
| 89 | \( 1 + (-2.59 - 1.5i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (9 + 9i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.91207071533479436412073410489, −12.10671777155955384707011941601, −10.75750357625878724601687080143, −9.468328193613773758388099228737, −8.894743760306749312137481492597, −7.43140810436718105673882173618, −6.69376241350682972458296218848, −5.94137313022502004013208214074, −2.79243026387659513564798109453, −1.36060225857218438043513669614,
2.52599602846283328643248464874, 3.90244369055853956568921339215, 5.69355420092330337635434911839, 7.00433647450526368200013376986, 8.838100821170792775595441961361, 9.339932143018132992056068766123, 10.04678113800125763124540710689, 10.75134636571187914034512693168, 12.21372132215837403933814314200, 13.25070966040520212892619000289