L(s) = 1 | + (−0.599 + 1.28i)2-s + (0.147 − 0.551i)3-s + (−1.28 − 1.53i)4-s + (1.15 − 1.91i)5-s + (0.618 + 0.520i)6-s + (0.735 − 2.54i)7-s + (2.73 − 0.719i)8-s + (2.31 + 1.33i)9-s + (1.76 + 2.62i)10-s + (−3.42 + 1.98i)11-s + (−1.03 + 0.479i)12-s + (2.04 − 2.04i)13-s + (2.81 + 2.46i)14-s + (−0.888 − 0.918i)15-s + (−0.719 + 3.93i)16-s + (−0.155 + 0.580i)17-s + ⋯ |
L(s) = 1 | + (−0.424 + 0.905i)2-s + (0.0853 − 0.318i)3-s + (−0.640 − 0.768i)4-s + (0.514 − 0.857i)5-s + (0.252 + 0.212i)6-s + (0.277 − 0.960i)7-s + (0.967 − 0.254i)8-s + (0.771 + 0.445i)9-s + (0.558 + 0.829i)10-s + (−1.03 + 0.597i)11-s + (−0.299 + 0.138i)12-s + (0.568 − 0.568i)13-s + (0.752 + 0.658i)14-s + (−0.229 − 0.237i)15-s + (−0.179 + 0.983i)16-s + (−0.0377 + 0.140i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0337i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0337i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.968397 - 0.0163474i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.968397 - 0.0163474i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.599 - 1.28i)T \) |
| 5 | \( 1 + (-1.15 + 1.91i)T \) |
| 7 | \( 1 + (-0.735 + 2.54i)T \) |
good | 3 | \( 1 + (-0.147 + 0.551i)T + (-2.59 - 1.5i)T^{2} \) |
| 11 | \( 1 + (3.42 - 1.98i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.04 + 2.04i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.155 - 0.580i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (1.00 - 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.39 + 0.640i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 - 7.25iT - 29T^{2} \) |
| 31 | \( 1 + (-2.83 + 1.63i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (9.29 - 2.49i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 3.35T + 41T^{2} \) |
| 43 | \( 1 + (3.31 + 3.31i)T + 43iT^{2} \) |
| 47 | \( 1 + (-3.24 - 12.1i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-2.90 - 0.779i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-7.41 - 12.8i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.11 - 3.66i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.67 + 0.984i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 - 4.86iT - 71T^{2} \) |
| 73 | \( 1 + (-9.44 - 2.53i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-3.45 + 5.98i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.46 + 5.46i)T + 83iT^{2} \) |
| 89 | \( 1 + (3.35 + 1.93i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.11 - 1.11i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.28998336205367192772561837611, −12.65061025530135155266625066523, −10.53998345301821139550807114992, −10.14528994425466790490075247607, −8.695823386111270160116814592103, −7.82001654463975959017747291429, −6.91117484020116057726213277922, −5.40973049162239723873879057885, −4.46553662604100648614585640000, −1.40957235883127094120216417481,
2.19986676452856643319575936019, 3.50038730831371471685755954202, 5.17567608770292908630806188847, 6.75364512710845152193832980112, 8.244616616879961622500618264252, 9.241219375763108350920108848684, 10.16721418974019288768586672594, 11.01495139186743441057315114033, 11.92020321679702874369522220796, 13.12689671439597835864431586439