Properties

Label 2-13e2-169.4-c1-0-10
Degree $2$
Conductor $169$
Sign $0.530 + 0.847i$
Analytic cond. $1.34947$
Root an. cond. $1.16166$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.596 + 0.0240i)2-s + (0.703 − 2.43i)3-s + (−1.63 − 0.132i)4-s + (3.70 + 1.40i)5-s + (0.478 − 1.43i)6-s + (−0.324 − 0.762i)7-s + (−2.16 − 0.262i)8-s + (−2.87 − 1.81i)9-s + (2.17 + 0.926i)10-s + (−0.896 − 1.41i)11-s + (−1.47 + 3.88i)12-s + (−2.52 + 2.57i)13-s + (−0.175 − 0.462i)14-s + (6.01 − 8.00i)15-s + (1.96 + 0.318i)16-s + (6.43 − 2.74i)17-s + ⋯
L(s)  = 1  + (0.422 + 0.0170i)2-s + (0.406 − 1.40i)3-s + (−0.818 − 0.0661i)4-s + (1.65 + 0.627i)5-s + (0.195 − 0.585i)6-s + (−0.122 − 0.288i)7-s + (−0.763 − 0.0927i)8-s + (−0.958 − 0.605i)9-s + (0.687 + 0.292i)10-s + (−0.270 − 0.427i)11-s + (−0.425 + 1.12i)12-s + (−0.699 + 0.714i)13-s + (−0.0469 − 0.123i)14-s + (1.55 − 2.06i)15-s + (0.490 + 0.0796i)16-s + (1.56 − 0.665i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.530 + 0.847i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.530 + 0.847i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $0.530 + 0.847i$
Analytic conductor: \(1.34947\)
Root analytic conductor: \(1.16166\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{169} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 169,\ (\ :1/2),\ 0.530 + 0.847i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.35928 - 0.752856i\)
\(L(\frac12)\) \(\approx\) \(1.35928 - 0.752856i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 + (2.52 - 2.57i)T \)
good2 \( 1 + (-0.596 - 0.0240i)T + (1.99 + 0.160i)T^{2} \)
3 \( 1 + (-0.703 + 2.43i)T + (-2.53 - 1.60i)T^{2} \)
5 \( 1 + (-3.70 - 1.40i)T + (3.74 + 3.31i)T^{2} \)
7 \( 1 + (0.324 + 0.762i)T + (-4.84 + 5.04i)T^{2} \)
11 \( 1 + (0.896 + 1.41i)T + (-4.71 + 9.93i)T^{2} \)
17 \( 1 + (-6.43 + 2.74i)T + (11.7 - 12.2i)T^{2} \)
19 \( 1 + (6.17 - 3.56i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (1.23 - 2.13i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (0.333 - 8.28i)T + (-28.9 - 2.33i)T^{2} \)
31 \( 1 + (-0.422 - 0.476i)T + (-3.73 + 30.7i)T^{2} \)
37 \( 1 + (4.24 - 0.865i)T + (34.0 - 14.5i)T^{2} \)
41 \( 1 + (3.37 + 0.977i)T + (34.6 + 21.9i)T^{2} \)
43 \( 1 + (-0.218 + 1.07i)T + (-39.5 - 16.8i)T^{2} \)
47 \( 1 + (1.62 - 1.11i)T + (16.6 - 43.9i)T^{2} \)
53 \( 1 + (0.146 - 1.21i)T + (-51.4 - 12.6i)T^{2} \)
59 \( 1 + (1.82 + 11.2i)T + (-55.9 + 18.6i)T^{2} \)
61 \( 1 + (1.57 - 1.18i)T + (16.9 - 58.5i)T^{2} \)
67 \( 1 + (0.248 + 3.07i)T + (-66.1 + 10.7i)T^{2} \)
71 \( 1 + (2.34 - 2.24i)T + (2.85 - 70.9i)T^{2} \)
73 \( 1 + (-4.05 + 7.71i)T + (-41.4 - 60.0i)T^{2} \)
79 \( 1 + (3.06 + 4.44i)T + (-28.0 + 73.8i)T^{2} \)
83 \( 1 + (1.84 - 7.49i)T + (-73.4 - 38.5i)T^{2} \)
89 \( 1 + (14.6 + 8.44i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (0.0230 + 0.0188i)T + (19.4 + 95.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.85763581531037432616539492165, −12.19707425058941366029858197294, −10.41509626862670720307827880588, −9.603431327959235573532882140094, −8.498968384885938443360378988380, −7.18781998446995535484314650179, −6.24357055998728091756393597880, −5.28452575154974425133305177007, −3.16778407750757940894655670948, −1.74628867828756993236492666591, 2.67282562755406300532057182839, 4.26945292368217674609900172383, 5.17526434169166277470411324840, 5.93080903854298529010410017269, 8.320537498078993781348396825121, 9.144921965515437066481701437403, 9.998588179703306840586682935554, 10.26657428696973952293999719403, 12.38844250300988720927870545413, 13.01014485169274814415911187934

Graph of the $Z$-function along the critical line