L(s) = 1 | + (−1.99 + 0.407i)2-s + (1.34 + 0.217i)3-s + (1.97 − 0.842i)4-s + (−0.647 − 2.62i)5-s + (−2.76 + 0.111i)6-s + (−3.12 − 1.48i)7-s + (−0.250 + 0.172i)8-s + (−1.09 − 0.365i)9-s + (2.36 + 4.97i)10-s + (−0.457 − 1.36i)11-s + (2.83 − 0.698i)12-s + (−2.59 + 2.50i)13-s + (6.84 + 1.68i)14-s + (−0.295 − 3.65i)15-s + (−2.54 + 2.65i)16-s + (3.18 − 6.71i)17-s + ⋯ |
L(s) = 1 | + (−1.41 + 0.288i)2-s + (0.773 + 0.125i)3-s + (0.988 − 0.421i)4-s + (−0.289 − 1.17i)5-s + (−1.12 + 0.0454i)6-s + (−1.18 − 0.560i)7-s + (−0.0885 + 0.0611i)8-s + (−0.365 − 0.121i)9-s + (0.746 + 1.57i)10-s + (−0.137 − 0.412i)11-s + (0.818 − 0.201i)12-s + (−0.718 + 0.695i)13-s + (1.82 + 0.450i)14-s + (−0.0762 − 0.944i)15-s + (−0.637 + 0.663i)16-s + (0.772 − 1.62i)17-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(−0.0700+0.997i)Λ(2−s)
Λ(s)=(=(169s/2ΓC(s+1/2)L(s)(−0.0700+0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
−0.0700+0.997i
|
Analytic conductor: |
1.34947 |
Root analytic conductor: |
1.16166 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :1/2), −0.0700+0.997i)
|
Particular Values
L(1) |
≈ |
0.322060−0.345471i |
L(21) |
≈ |
0.322060−0.345471i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(2.59−2.50i)T |
good | 2 | 1+(1.99−0.407i)T+(1.83−0.783i)T2 |
| 3 | 1+(−1.34−0.217i)T+(2.84+0.950i)T2 |
| 5 | 1+(0.647+2.62i)T+(−4.42+2.32i)T2 |
| 7 | 1+(3.12+1.48i)T+(4.42+5.42i)T2 |
| 11 | 1+(0.457+1.36i)T+(−8.79+6.60i)T2 |
| 17 | 1+(−3.18+6.71i)T+(−10.7−13.1i)T2 |
| 19 | 1+(−1.35+0.783i)T+(9.5−16.4i)T2 |
| 23 | 1+(−2.33+4.04i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−1.83−8.97i)T+(−26.6+11.3i)T2 |
| 31 | 1+(−2.10+4.00i)T+(−17.6−25.5i)T2 |
| 37 | 1+(−2.23−3.52i)T+(−15.8+33.4i)T2 |
| 41 | 1+(0.705−4.34i)T+(−38.8−12.9i)T2 |
| 43 | 1+(−6.97−4.41i)T+(18.4+38.8i)T2 |
| 47 | 1+(4.62−0.562i)T+(45.6−11.2i)T2 |
| 53 | 1+(6.04+8.76i)T+(−18.7+49.5i)T2 |
| 59 | 1+(−2.94+2.82i)T+(2.37−58.9i)T2 |
| 61 | 1+(1.14+0.0923i)T+(60.2+9.78i)T2 |
| 67 | 1+(−2.26+5.30i)T+(−46.4−48.3i)T2 |
| 71 | 1+(5.41+4.42i)T+(14.2+69.5i)T2 |
| 73 | 1+(−0.379+0.428i)T+(−8.79−72.4i)T2 |
| 79 | 1+(−0.816−6.72i)T+(−76.7+18.9i)T2 |
| 83 | 1+(1.28+0.488i)T+(62.1+55.0i)T2 |
| 89 | 1+(−13.8−8.00i)T+(44.5+77.0i)T2 |
| 97 | 1+(1.48−0.430i)T+(81.9−51.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.54564637276778288305908266707, −11.33505295143201825239331527698, −9.826463161415089185926920665879, −9.397395929177219263137164610295, −8.626685267992241114051849341928, −7.67973331115333934645102539843, −6.65091830931659378667856634685, −4.75690352084653212600529660490, −3.06325715258386003847230237213, −0.61976259606704120967196323977,
2.41985480893920638490651372576, 3.31930093741477234729881203435, 5.92382972322012607896022497665, 7.32603132817230540219633548341, 7.975922344004189746330169300017, 9.085783994313366618720973752885, 9.985262905971005014247047506514, 10.59022378885663659784914102172, 11.81800091953986015157766354021, 12.90698178843920932963708227732