L(s) = 1 | + (−2.81 + 0.113i)2-s + (0.467 + 1.61i)3-s + (5.93 − 0.479i)4-s + (1.59 − 0.605i)5-s + (−1.50 − 4.49i)6-s + (1.15 − 2.71i)7-s + (−11.0 + 1.34i)8-s + (0.147 − 0.0930i)9-s + (−4.43 + 1.88i)10-s + (1.00 − 1.58i)11-s + (3.55 + 9.36i)12-s + (−1.18 − 3.40i)13-s + (−2.95 + 7.78i)14-s + (1.72 + 2.29i)15-s + (19.3 − 3.13i)16-s + (−0.139 − 0.0595i)17-s + ⋯ |
L(s) = 1 | + (−1.99 + 0.0803i)2-s + (0.270 + 0.932i)3-s + (2.96 − 0.239i)4-s + (0.714 − 0.270i)5-s + (−0.612 − 1.83i)6-s + (0.437 − 1.02i)7-s + (−3.91 + 0.475i)8-s + (0.0490 − 0.0310i)9-s + (−1.40 + 0.597i)10-s + (0.302 − 0.477i)11-s + (1.02 + 2.70i)12-s + (−0.329 − 0.944i)13-s + (−0.788 + 2.08i)14-s + (0.445 + 0.592i)15-s + (4.82 − 0.784i)16-s + (−0.0338 − 0.0144i)17-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(0.991−0.131i)Λ(2−s)
Λ(s)=(=(169s/2ΓC(s+1/2)L(s)(0.991−0.131i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
0.991−0.131i
|
Analytic conductor: |
1.34947 |
Root analytic conductor: |
1.16166 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :1/2), 0.991−0.131i)
|
Particular Values
L(1) |
≈ |
0.650002+0.0429729i |
L(21) |
≈ |
0.650002+0.0429729i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(1.18+3.40i)T |
good | 2 | 1+(2.81−0.113i)T+(1.99−0.160i)T2 |
| 3 | 1+(−0.467−1.61i)T+(−2.53+1.60i)T2 |
| 5 | 1+(−1.59+0.605i)T+(3.74−3.31i)T2 |
| 7 | 1+(−1.15+2.71i)T+(−4.84−5.04i)T2 |
| 11 | 1+(−1.00+1.58i)T+(−4.71−9.93i)T2 |
| 17 | 1+(0.139+0.0595i)T+(11.7+12.2i)T2 |
| 19 | 1+(−3.60−2.08i)T+(9.5+16.4i)T2 |
| 23 | 1+(0.549+0.951i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−0.145−3.60i)T+(−28.9+2.33i)T2 |
| 31 | 1+(3.40−3.84i)T+(−3.73−30.7i)T2 |
| 37 | 1+(3.51+0.717i)T+(34.0+14.5i)T2 |
| 41 | 1+(4.62−1.34i)T+(34.6−21.9i)T2 |
| 43 | 1+(−0.658−3.22i)T+(−39.5+16.8i)T2 |
| 47 | 1+(−7.83−5.40i)T+(16.6+43.9i)T2 |
| 53 | 1+(0.943+7.76i)T+(−51.4+12.6i)T2 |
| 59 | 1+(−0.889+5.47i)T+(−55.9−18.6i)T2 |
| 61 | 1+(8.26+6.21i)T+(16.9+58.5i)T2 |
| 67 | 1+(1.16−14.4i)T+(−66.1−10.7i)T2 |
| 71 | 1+(3.77+3.62i)T+(2.85+70.9i)T2 |
| 73 | 1+(0.450+0.857i)T+(−41.4+60.0i)T2 |
| 79 | 1+(0.951−1.37i)T+(−28.0−73.8i)T2 |
| 83 | 1+(−2.87−11.6i)T+(−73.4+38.5i)T2 |
| 89 | 1+(−4.63+2.67i)T+(44.5−77.0i)T2 |
| 97 | 1+(6.11−4.99i)T+(19.4−95.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.44373009086945728267557515072, −11.10126590250307825760340306237, −10.39169621825813320957257950888, −9.777747466113841002943041045894, −8.981176390255912437388051659011, −7.939861154170715161821584247225, −6.95036325655286188234252953919, −5.50423351128108344195760150065, −3.31759687324944794412165861586, −1.31598885904049388558152219290,
1.74524081161765026228300052735, 2.42038113875547174657793257599, 5.90792126818545123972924995665, 6.95481225799952250236802754420, 7.67034193398040676638364435235, 8.826779852648619347797072115989, 9.477202908702137832203874224508, 10.46491752486020040012959290559, 11.80908103752512245586135486808, 12.12434204328674350757886720327