L(s) = 1 | + (2.57 − 0.103i)2-s + (−0.381 − 1.31i)3-s + (4.64 − 0.374i)4-s + (−3.32 + 1.26i)5-s + (−1.12 − 3.35i)6-s + (0.633 − 1.48i)7-s + (6.81 − 0.827i)8-s + (0.946 − 0.598i)9-s + (−8.44 + 3.59i)10-s + (−2.92 + 4.61i)11-s + (−2.26 − 5.97i)12-s + (0.0292 + 3.60i)13-s + (1.47 − 3.90i)14-s + (2.92 + 3.89i)15-s + (8.28 − 1.34i)16-s + (0.607 + 0.258i)17-s + ⋯ |
L(s) = 1 | + (1.82 − 0.0734i)2-s + (−0.220 − 0.760i)3-s + (2.32 − 0.187i)4-s + (−1.48 + 0.563i)5-s + (−0.457 − 1.37i)6-s + (0.239 − 0.562i)7-s + (2.40 − 0.292i)8-s + (0.315 − 0.199i)9-s + (−2.66 + 1.13i)10-s + (−0.880 + 1.39i)11-s + (−0.654 − 1.72i)12-s + (0.00810 + 0.999i)13-s + (0.395 − 1.04i)14-s + (0.756 + 1.00i)15-s + (2.07 − 0.336i)16-s + (0.147 + 0.0628i)17-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(0.866+0.499i)Λ(2−s)
Λ(s)=(=(169s/2ΓC(s+1/2)L(s)(0.866+0.499i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
0.866+0.499i
|
Analytic conductor: |
1.34947 |
Root analytic conductor: |
1.16166 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :1/2), 0.866+0.499i)
|
Particular Values
L(1) |
≈ |
2.29606−0.614350i |
L(21) |
≈ |
2.29606−0.614350i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(−0.0292−3.60i)T |
good | 2 | 1+(−2.57+0.103i)T+(1.99−0.160i)T2 |
| 3 | 1+(0.381+1.31i)T+(−2.53+1.60i)T2 |
| 5 | 1+(3.32−1.26i)T+(3.74−3.31i)T2 |
| 7 | 1+(−0.633+1.48i)T+(−4.84−5.04i)T2 |
| 11 | 1+(2.92−4.61i)T+(−4.71−9.93i)T2 |
| 17 | 1+(−0.607−0.258i)T+(11.7+12.2i)T2 |
| 19 | 1+(3.26+1.88i)T+(9.5+16.4i)T2 |
| 23 | 1+(2.06+3.58i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.0150+0.374i)T+(−28.9+2.33i)T2 |
| 31 | 1+(−4.01+4.52i)T+(−3.73−30.7i)T2 |
| 37 | 1+(−8.68−1.77i)T+(34.0+14.5i)T2 |
| 41 | 1+(6.39−1.85i)T+(34.6−21.9i)T2 |
| 43 | 1+(1.58+7.75i)T+(−39.5+16.8i)T2 |
| 47 | 1+(−7.99−5.51i)T+(16.6+43.9i)T2 |
| 53 | 1+(0.387+3.18i)T+(−51.4+12.6i)T2 |
| 59 | 1+(−0.599+3.68i)T+(−55.9−18.6i)T2 |
| 61 | 1+(3.97+2.98i)T+(16.9+58.5i)T2 |
| 67 | 1+(0.700−8.67i)T+(−66.1−10.7i)T2 |
| 71 | 1+(−0.998−0.959i)T+(2.85+70.9i)T2 |
| 73 | 1+(0.592+1.12i)T+(−41.4+60.0i)T2 |
| 79 | 1+(2.22−3.22i)T+(−28.0−73.8i)T2 |
| 83 | 1+(1.29+5.24i)T+(−73.4+38.5i)T2 |
| 89 | 1+(−2.98+1.72i)T+(44.5−77.0i)T2 |
| 97 | 1+(10.3−8.45i)T+(19.4−95.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.64640265602941064829560031833, −12.01635330059612169693068059651, −11.31750203883927704914908192749, −10.29030827759539380149917148403, −7.79874151829973167106590401954, −7.15109176609073055423611246800, −6.43600089209193469749301192812, −4.54933281947871801293271547763, −4.07672747787705185962972979794, −2.35291043309733468343661329194,
3.10954806284263771463929008899, 4.08277376286960215430961535525, 5.06005798576170379983312532180, 5.83006024328164707892476110919, 7.60024283378501980898845480484, 8.397000478131389877952744805818, 10.48701012263283796500286252108, 11.22847234957584780590050571639, 12.04054084106673080322715294566, 12.84547465457740212428683348226