L(s) = 1 | + (−2.52 − 0.514i)2-s + (2.70 − 0.439i)3-s + (4.24 + 1.81i)4-s + (0.847 − 3.43i)5-s + (−7.05 − 0.284i)6-s + (0.693 − 0.328i)7-s + (−5.54 − 3.82i)8-s + (4.28 − 1.43i)9-s + (−3.90 + 8.22i)10-s + (−1.32 + 3.95i)11-s + (12.2 + 3.03i)12-s + (−2.08 + 2.94i)13-s + (−1.91 + 0.472i)14-s + (0.781 − 9.67i)15-s + (5.60 + 5.83i)16-s + (−2.29 − 4.83i)17-s + ⋯ |
L(s) = 1 | + (−1.78 − 0.363i)2-s + (1.56 − 0.254i)3-s + (2.12 + 0.905i)4-s + (0.378 − 1.53i)5-s + (−2.87 − 0.115i)6-s + (0.262 − 0.124i)7-s + (−1.95 − 1.35i)8-s + (1.42 − 0.477i)9-s + (−1.23 + 2.60i)10-s + (−0.398 + 1.19i)11-s + (3.55 + 0.875i)12-s + (−0.576 + 0.816i)13-s + (−0.512 + 0.126i)14-s + (0.201 − 2.49i)15-s + (1.40 + 1.45i)16-s + (−0.556 − 1.17i)17-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(0.369+0.929i)Λ(2−s)
Λ(s)=(=(169s/2ΓC(s+1/2)L(s)(0.369+0.929i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
0.369+0.929i
|
Analytic conductor: |
1.34947 |
Root analytic conductor: |
1.16166 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :1/2), 0.369+0.929i)
|
Particular Values
L(1) |
≈ |
0.738024−0.500961i |
L(21) |
≈ |
0.738024−0.500961i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(2.08−2.94i)T |
good | 2 | 1+(2.52+0.514i)T+(1.83+0.783i)T2 |
| 3 | 1+(−2.70+0.439i)T+(2.84−0.950i)T2 |
| 5 | 1+(−0.847+3.43i)T+(−4.42−2.32i)T2 |
| 7 | 1+(−0.693+0.328i)T+(4.42−5.42i)T2 |
| 11 | 1+(1.32−3.95i)T+(−8.79−6.60i)T2 |
| 17 | 1+(2.29+4.83i)T+(−10.7+13.1i)T2 |
| 19 | 1+(−1.08−0.625i)T+(9.5+16.4i)T2 |
| 23 | 1+(−1.81−3.14i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−0.242+1.18i)T+(−26.6−11.3i)T2 |
| 31 | 1+(−1.61−3.08i)T+(−17.6+25.5i)T2 |
| 37 | 1+(−5.46+8.63i)T+(−15.8−33.4i)T2 |
| 41 | 1+(−1.11−6.83i)T+(−38.8+12.9i)T2 |
| 43 | 1+(4.94−3.12i)T+(18.4−38.8i)T2 |
| 47 | 1+(−1.77−0.215i)T+(45.6+11.2i)T2 |
| 53 | 1+(−0.439+0.636i)T+(−18.7−49.5i)T2 |
| 59 | 1+(3.29+3.16i)T+(2.37+58.9i)T2 |
| 61 | 1+(−7.51+0.606i)T+(60.2−9.78i)T2 |
| 67 | 1+(−3.22−7.57i)T+(−46.4+48.3i)T2 |
| 71 | 1+(7.05−5.75i)T+(14.2−69.5i)T2 |
| 73 | 1+(7.64+8.62i)T+(−8.79+72.4i)T2 |
| 79 | 1+(−0.238+1.96i)T+(−76.7−18.9i)T2 |
| 83 | 1+(−1.92+0.731i)T+(62.1−55.0i)T2 |
| 89 | 1+(7.96−4.59i)T+(44.5−77.0i)T2 |
| 97 | 1+(−2.85−0.827i)T+(81.9+51.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.52939881061302229783767246956, −11.50948369861076278476728389264, −9.776550951459245628348494462943, −9.452337240846122867015363356073, −8.753941108776478581823528495350, −7.81927221090528229570266208284, −7.13977966595557185307406924661, −4.65189185393078644688745264470, −2.51272053170080896808376979212, −1.51413618322468157767354325780,
2.28805317398735887105919647157, 3.14935214784112573783235061802, 6.10721768411212323166919766461, 7.20916929314645384994084711491, 8.143981709367129058840303024707, 8.694583103312550327494451012327, 9.915687513169550550466849769448, 10.44289220405895075885572777661, 11.26582800930131086140518377187, 13.31974093151996889973393178938