L(s) = 1 | + (−1.44 − 0.294i)2-s + (−2.46 + 0.401i)3-s + (0.148 + 0.0631i)4-s + (0.720 − 2.92i)5-s + (3.67 + 0.148i)6-s + (−2.39 + 1.13i)7-s + (2.22 + 1.53i)8-s + (3.09 − 1.03i)9-s + (−1.89 + 3.99i)10-s + (−0.728 + 2.18i)11-s + (−0.391 − 0.0965i)12-s + (1.92 + 3.04i)13-s + (3.78 − 0.932i)14-s + (−0.606 + 7.51i)15-s + (−2.97 − 3.09i)16-s + (1.97 + 4.16i)17-s + ⋯ |
L(s) = 1 | + (−1.01 − 0.207i)2-s + (−1.42 + 0.231i)3-s + (0.0741 + 0.0315i)4-s + (0.322 − 1.30i)5-s + (1.50 + 0.0604i)6-s + (−0.904 + 0.429i)7-s + (0.786 + 0.542i)8-s + (1.03 − 0.344i)9-s + (−0.600 + 1.26i)10-s + (−0.219 + 0.657i)11-s + (−0.113 − 0.0278i)12-s + (0.534 + 0.845i)13-s + (1.01 − 0.249i)14-s + (−0.156 + 1.93i)15-s + (−0.744 − 0.774i)16-s + (0.479 + 1.01i)17-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(0.395−0.918i)Λ(2−s)
Λ(s)=(=(169s/2ΓC(s+1/2)L(s)(0.395−0.918i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
0.395−0.918i
|
Analytic conductor: |
1.34947 |
Root analytic conductor: |
1.16166 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :1/2), 0.395−0.918i)
|
Particular Values
L(1) |
≈ |
0.222002+0.146195i |
L(21) |
≈ |
0.222002+0.146195i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(−1.92−3.04i)T |
good | 2 | 1+(1.44+0.294i)T+(1.83+0.783i)T2 |
| 3 | 1+(2.46−0.401i)T+(2.84−0.950i)T2 |
| 5 | 1+(−0.720+2.92i)T+(−4.42−2.32i)T2 |
| 7 | 1+(2.39−1.13i)T+(4.42−5.42i)T2 |
| 11 | 1+(0.728−2.18i)T+(−8.79−6.60i)T2 |
| 17 | 1+(−1.97−4.16i)T+(−10.7+13.1i)T2 |
| 19 | 1+(1.79+1.03i)T+(9.5+16.4i)T2 |
| 23 | 1+(−3.57−6.18i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−0.932+4.56i)T+(−26.6−11.3i)T2 |
| 31 | 1+(1.28+2.44i)T+(−17.6+25.5i)T2 |
| 37 | 1+(1.42−2.24i)T+(−15.8−33.4i)T2 |
| 41 | 1+(−1.11−6.88i)T+(−38.8+12.9i)T2 |
| 43 | 1+(7.73−4.89i)T+(18.4−38.8i)T2 |
| 47 | 1+(1.71+0.208i)T+(45.6+11.2i)T2 |
| 53 | 1+(7.11−10.3i)T+(−18.7−49.5i)T2 |
| 59 | 1+(−8.35−8.02i)T+(2.37+58.9i)T2 |
| 61 | 1+(−3.47+0.280i)T+(60.2−9.78i)T2 |
| 67 | 1+(5.31+12.4i)T+(−46.4+48.3i)T2 |
| 71 | 1+(−8.65+7.06i)T+(14.2−69.5i)T2 |
| 73 | 1+(−0.619−0.699i)T+(−8.79+72.4i)T2 |
| 79 | 1+(1.68−13.8i)T+(−76.7−18.9i)T2 |
| 83 | 1+(−10.5+4.00i)T+(62.1−55.0i)T2 |
| 89 | 1+(7.69−4.44i)T+(44.5−77.0i)T2 |
| 97 | 1+(9.44+2.73i)T+(81.9+51.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.74934069296589368183990701928, −11.81766695358611231948847576032, −10.86564017545505473404085997164, −9.745821921027399120758646144194, −9.303596215986027229581877421268, −8.131611435298801976528116442574, −6.45873161509662724761289702308, −5.42615482202931518155753945847, −4.46888574247211617584142449066, −1.38198983670162624157366984553,
0.45743614550339639204461641449, 3.31596284240950381315531093039, 5.35915231802218136668157178878, 6.65775049977064124559100888880, 6.98269313766089760147667129572, 8.486376186678968172024393972190, 9.952635410077321135051390843237, 10.55850439891737605857699768611, 11.09986090877292658010492009873, 12.55436560071802421522821959802