L(s) = 1 | + (−2.34 − 2.34i)2-s − 3·3-s + 7i·4-s + (2.34 + 2.34i)5-s + (7.03 + 7.03i)6-s + (7.03 − 7.03i)7-s + (7.03 − 7.03i)8-s − 11i·10-s + (4.69 − 4.69i)11-s − 21i·12-s − 33·14-s + (−7.03 − 7.03i)15-s − 5·16-s + 3i·17-s + (−14.0 − 14.0i)19-s + (−16.4 + 16.4i)20-s + ⋯ |
L(s) = 1 | + (−1.17 − 1.17i)2-s − 3-s + 1.75i·4-s + (0.469 + 0.469i)5-s + (1.17 + 1.17i)6-s + (1.00 − 1.00i)7-s + (0.879 − 0.879i)8-s − 1.10i·10-s + (0.426 − 0.426i)11-s − 1.75i·12-s − 2.35·14-s + (−0.469 − 0.469i)15-s − 0.312·16-s + 0.176i·17-s + (−0.740 − 0.740i)19-s + (−0.820 + 0.820i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 + 0.289i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0701373 - 0.473680i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0701373 - 0.473680i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 + (2.34 + 2.34i)T + 4iT^{2} \) |
| 3 | \( 1 + 3T + 9T^{2} \) |
| 5 | \( 1 + (-2.34 - 2.34i)T + 25iT^{2} \) |
| 7 | \( 1 + (-7.03 + 7.03i)T - 49iT^{2} \) |
| 11 | \( 1 + (-4.69 + 4.69i)T - 121iT^{2} \) |
| 17 | \( 1 - 3iT - 289T^{2} \) |
| 19 | \( 1 + (14.0 + 14.0i)T + 361iT^{2} \) |
| 23 | \( 1 - 12iT - 529T^{2} \) |
| 29 | \( 1 + 42T + 841T^{2} \) |
| 31 | \( 1 + (28.1 + 28.1i)T + 961iT^{2} \) |
| 37 | \( 1 + (-35.1 + 35.1i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (32.8 + 32.8i)T + 1.68e3iT^{2} \) |
| 43 | \( 1 + 49iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (2.34 - 2.34i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + 24T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-37.5 + 37.5i)T - 3.48e3iT^{2} \) |
| 61 | \( 1 - 30T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-28.1 - 28.1i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + (-16.4 - 16.4i)T + 5.04e3iT^{2} \) |
| 73 | \( 1 + (-28.1 + 28.1i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 54T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-32.8 - 32.8i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (117. - 117. i)T - 7.92e3iT^{2} \) |
| 97 | \( 1 + (14.0 + 14.0i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.40193455686945906529213028459, −11.11446930638685808146810898521, −10.46013837466436257248400798233, −9.341850737456151998212655471552, −8.207055330665520210720896398354, −7.03095525451888981842280536482, −5.60616039871882773883519767843, −3.91218329087799270974986489570, −2.04687334041393337655454193340, −0.50687259975048986983650056356,
1.55623987076872935983950675627, 4.99055943274169024918634350643, 5.71759443496550371006168742915, 6.61332342840504900454469836819, 7.982852870821903329330192327278, 8.805857313211130631884419535493, 9.654985932650205836160487403243, 10.88003825861519146917911958775, 11.79242766999262316119959521244, 12.82570242248127954852988067868