L(s) = 1 | − 0.554i·2-s + 0.801·3-s + 1.69·4-s − 2.80i·5-s − 0.445i·6-s + 2.69i·7-s − 2.04i·8-s − 2.35·9-s − 1.55·10-s + 1.19i·11-s + 1.35·12-s + 1.49·14-s − 2.24i·15-s + 2.24·16-s − 1.13·17-s + 1.30i·18-s + ⋯ |
L(s) = 1 | − 0.392i·2-s + 0.462·3-s + 0.846·4-s − 1.25i·5-s − 0.181i·6-s + 1.01i·7-s − 0.724i·8-s − 0.785·9-s − 0.491·10-s + 0.361i·11-s + 0.391·12-s + 0.399·14-s − 0.580i·15-s + 0.561·16-s − 0.275·17-s + 0.308i·18-s + ⋯ |
Λ(s)=(=(169s/2ΓC(s)L(s)(0.691+0.722i)Λ(2−s)
Λ(s)=(=(169s/2ΓC(s+1/2)L(s)(0.691+0.722i)Λ(1−s)
Degree: |
2 |
Conductor: |
169
= 132
|
Sign: |
0.691+0.722i
|
Analytic conductor: |
1.34947 |
Root analytic conductor: |
1.16166 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ169(168,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 169, ( :1/2), 0.691+0.722i)
|
Particular Values
L(1) |
≈ |
1.35538−0.578613i |
L(21) |
≈ |
1.35538−0.578613i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1 |
good | 2 | 1+0.554iT−2T2 |
| 3 | 1−0.801T+3T2 |
| 5 | 1+2.80iT−5T2 |
| 7 | 1−2.69iT−7T2 |
| 11 | 1−1.19iT−11T2 |
| 17 | 1+1.13T+17T2 |
| 19 | 1−1.93iT−19T2 |
| 23 | 1−4.60T+23T2 |
| 29 | 1+7.89T+29T2 |
| 31 | 1−5.89iT−31T2 |
| 37 | 1+0.951iT−37T2 |
| 41 | 1−3.31iT−41T2 |
| 43 | 1+7.15T+43T2 |
| 47 | 1−7.69iT−47T2 |
| 53 | 1−5.87T+53T2 |
| 59 | 1−0.0120iT−59T2 |
| 61 | 1+8.03T+61T2 |
| 67 | 1+9.25iT−67T2 |
| 71 | 1+13.7iT−71T2 |
| 73 | 1+12.8iT−73T2 |
| 79 | 1−0.807T+79T2 |
| 83 | 1+16.3iT−83T2 |
| 89 | 1−14.7iT−89T2 |
| 97 | 1−3.13iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.46411806192441046530082690304, −11.86302020321111432584732948672, −10.83927107409341649636334428678, −9.375482347468606611056271135866, −8.778823233459227880407182999975, −7.66471625855674818277110366204, −6.12411235041285051012484329717, −5.02991880792359541495104972319, −3.21612061595007245431824799924, −1.85363386397674879286724229876,
2.50507082103092567003728858686, 3.58631967682433352224547082499, 5.67399485917868166993388689587, 6.86912401101177441015696700849, 7.41409192544279426129151621974, 8.614244742138536684828859967988, 10.10481225846461631473521577550, 11.10911071766157646178444943363, 11.42699065598586314950194827702, 13.23172843026177316489265010637