L(s) = 1 | − 0.554i·2-s + 0.801·3-s + 1.69·4-s − 2.80i·5-s − 0.445i·6-s + 2.69i·7-s − 2.04i·8-s − 2.35·9-s − 1.55·10-s + 1.19i·11-s + 1.35·12-s + 1.49·14-s − 2.24i·15-s + 2.24·16-s − 1.13·17-s + 1.30i·18-s + ⋯ |
L(s) = 1 | − 0.392i·2-s + 0.462·3-s + 0.846·4-s − 1.25i·5-s − 0.181i·6-s + 1.01i·7-s − 0.724i·8-s − 0.785·9-s − 0.491·10-s + 0.361i·11-s + 0.391·12-s + 0.399·14-s − 0.580i·15-s + 0.561·16-s − 0.275·17-s + 0.308i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.691 + 0.722i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.691 + 0.722i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.35538 - 0.578613i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.35538 - 0.578613i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 + 0.554iT - 2T^{2} \) |
| 3 | \( 1 - 0.801T + 3T^{2} \) |
| 5 | \( 1 + 2.80iT - 5T^{2} \) |
| 7 | \( 1 - 2.69iT - 7T^{2} \) |
| 11 | \( 1 - 1.19iT - 11T^{2} \) |
| 17 | \( 1 + 1.13T + 17T^{2} \) |
| 19 | \( 1 - 1.93iT - 19T^{2} \) |
| 23 | \( 1 - 4.60T + 23T^{2} \) |
| 29 | \( 1 + 7.89T + 29T^{2} \) |
| 31 | \( 1 - 5.89iT - 31T^{2} \) |
| 37 | \( 1 + 0.951iT - 37T^{2} \) |
| 41 | \( 1 - 3.31iT - 41T^{2} \) |
| 43 | \( 1 + 7.15T + 43T^{2} \) |
| 47 | \( 1 - 7.69iT - 47T^{2} \) |
| 53 | \( 1 - 5.87T + 53T^{2} \) |
| 59 | \( 1 - 0.0120iT - 59T^{2} \) |
| 61 | \( 1 + 8.03T + 61T^{2} \) |
| 67 | \( 1 + 9.25iT - 67T^{2} \) |
| 71 | \( 1 + 13.7iT - 71T^{2} \) |
| 73 | \( 1 + 12.8iT - 73T^{2} \) |
| 79 | \( 1 - 0.807T + 79T^{2} \) |
| 83 | \( 1 + 16.3iT - 83T^{2} \) |
| 89 | \( 1 - 14.7iT - 89T^{2} \) |
| 97 | \( 1 - 3.13iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.46411806192441046530082690304, −11.86302020321111432584732948672, −10.83927107409341649636334428678, −9.375482347468606611056271135866, −8.778823233459227880407182999975, −7.66471625855674818277110366204, −6.12411235041285051012484329717, −5.02991880792359541495104972319, −3.21612061595007245431824799924, −1.85363386397674879286724229876,
2.50507082103092567003728858686, 3.58631967682433352224547082499, 5.67399485917868166993388689587, 6.86912401101177441015696700849, 7.41409192544279426129151621974, 8.614244742138536684828859967988, 10.10481225846461631473521577550, 11.10911071766157646178444943363, 11.42699065598586314950194827702, 13.23172843026177316489265010637