Properties

Label 2-13e2-1.1-c7-0-43
Degree $2$
Conductor $169$
Sign $1$
Analytic cond. $52.7930$
Root an. cond. $7.26588$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16.1·2-s + 71.3·3-s + 134.·4-s + 532.·5-s − 1.15e3·6-s + 6.33·7-s − 104.·8-s + 2.90e3·9-s − 8.62e3·10-s − 4.95e3·11-s + 9.59e3·12-s − 102.·14-s + 3.80e4·15-s − 1.55e4·16-s + 1.51e4·17-s − 4.71e4·18-s + 8.04e3·19-s + 7.15e4·20-s + 452.·21-s + 8.02e4·22-s + 1.84e4·23-s − 7.42e3·24-s + 2.05e5·25-s + 5.14e4·27-s + 851.·28-s + 6.94e4·29-s − 6.15e5·30-s + ⋯
L(s)  = 1  − 1.43·2-s + 1.52·3-s + 1.05·4-s + 1.90·5-s − 2.18·6-s + 0.00698·7-s − 0.0718·8-s + 1.32·9-s − 2.72·10-s − 1.12·11-s + 1.60·12-s − 0.00999·14-s + 2.90·15-s − 0.947·16-s + 0.748·17-s − 1.90·18-s + 0.269·19-s + 2.00·20-s + 0.0106·21-s + 1.60·22-s + 0.315·23-s − 0.109·24-s + 2.62·25-s + 0.503·27-s + 0.00733·28-s + 0.528·29-s − 4.16·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $1$
Analytic conductor: \(52.7930\)
Root analytic conductor: \(7.26588\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 169,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.606717294\)
\(L(\frac12)\) \(\approx\) \(2.606717294\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 + 16.1T + 128T^{2} \)
3 \( 1 - 71.3T + 2.18e3T^{2} \)
5 \( 1 - 532.T + 7.81e4T^{2} \)
7 \( 1 - 6.33T + 8.23e5T^{2} \)
11 \( 1 + 4.95e3T + 1.94e7T^{2} \)
17 \( 1 - 1.51e4T + 4.10e8T^{2} \)
19 \( 1 - 8.04e3T + 8.93e8T^{2} \)
23 \( 1 - 1.84e4T + 3.40e9T^{2} \)
29 \( 1 - 6.94e4T + 1.72e10T^{2} \)
31 \( 1 - 2.36e5T + 2.75e10T^{2} \)
37 \( 1 + 3.54e4T + 9.49e10T^{2} \)
41 \( 1 + 7.25e4T + 1.94e11T^{2} \)
43 \( 1 - 2.58e5T + 2.71e11T^{2} \)
47 \( 1 + 3.79e5T + 5.06e11T^{2} \)
53 \( 1 + 8.41e4T + 1.17e12T^{2} \)
59 \( 1 + 1.65e6T + 2.48e12T^{2} \)
61 \( 1 - 1.68e6T + 3.14e12T^{2} \)
67 \( 1 - 2.29e6T + 6.06e12T^{2} \)
71 \( 1 - 1.65e6T + 9.09e12T^{2} \)
73 \( 1 - 6.62e6T + 1.10e13T^{2} \)
79 \( 1 - 8.77e5T + 1.92e13T^{2} \)
83 \( 1 - 5.80e6T + 2.71e13T^{2} \)
89 \( 1 + 4.14e6T + 4.42e13T^{2} \)
97 \( 1 + 1.51e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.76031562740891854267612342425, −9.845097050246436394306640103434, −9.594730975258077251716904433451, −8.535328466204960151086533168182, −7.86370473937588616581376026381, −6.60533758246829900545187618362, −5.10631386841960062333418131340, −2.88772575940857611777446104171, −2.14671299103892176799947680729, −1.10915096883452035966935589528, 1.10915096883452035966935589528, 2.14671299103892176799947680729, 2.88772575940857611777446104171, 5.10631386841960062333418131340, 6.60533758246829900545187618362, 7.86370473937588616581376026381, 8.535328466204960151086533168182, 9.594730975258077251716904433451, 9.845097050246436394306640103434, 10.76031562740891854267612342425

Graph of the $Z$-function along the critical line