Properties

Label 2-13e2-1.1-c7-0-24
Degree $2$
Conductor $169$
Sign $1$
Analytic cond. $52.7930$
Root an. cond. $7.26588$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.26·2-s + 66.7·3-s − 117.·4-s − 259.·5-s + 217.·6-s − 1.45e3·7-s − 800.·8-s + 2.26e3·9-s − 847.·10-s + 4.45e3·11-s − 7.83e3·12-s − 4.74e3·14-s − 1.73e4·15-s + 1.24e4·16-s − 1.92e4·17-s + 7.39e3·18-s + 3.93e4·19-s + 3.05e4·20-s − 9.70e4·21-s + 1.45e4·22-s + 2.84e4·23-s − 5.34e4·24-s − 1.05e4·25-s + 5.48e3·27-s + 1.70e5·28-s + 2.46e5·29-s − 5.65e4·30-s + ⋯
L(s)  = 1  + 0.288·2-s + 1.42·3-s − 0.916·4-s − 0.930·5-s + 0.411·6-s − 1.60·7-s − 0.552·8-s + 1.03·9-s − 0.268·10-s + 1.00·11-s − 1.30·12-s − 0.461·14-s − 1.32·15-s + 0.757·16-s − 0.950·17-s + 0.299·18-s + 1.31·19-s + 0.852·20-s − 2.28·21-s + 0.290·22-s + 0.487·23-s − 0.788·24-s − 0.134·25-s + 0.0536·27-s + 1.46·28-s + 1.87·29-s − 0.382·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $1$
Analytic conductor: \(52.7930\)
Root analytic conductor: \(7.26588\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 169,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.026933327\)
\(L(\frac12)\) \(\approx\) \(2.026933327\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 - 3.26T + 128T^{2} \)
3 \( 1 - 66.7T + 2.18e3T^{2} \)
5 \( 1 + 259.T + 7.81e4T^{2} \)
7 \( 1 + 1.45e3T + 8.23e5T^{2} \)
11 \( 1 - 4.45e3T + 1.94e7T^{2} \)
17 \( 1 + 1.92e4T + 4.10e8T^{2} \)
19 \( 1 - 3.93e4T + 8.93e8T^{2} \)
23 \( 1 - 2.84e4T + 3.40e9T^{2} \)
29 \( 1 - 2.46e5T + 1.72e10T^{2} \)
31 \( 1 - 1.00e5T + 2.75e10T^{2} \)
37 \( 1 - 1.00e5T + 9.49e10T^{2} \)
41 \( 1 + 4.90e4T + 1.94e11T^{2} \)
43 \( 1 + 5.59e4T + 2.71e11T^{2} \)
47 \( 1 - 7.77e5T + 5.06e11T^{2} \)
53 \( 1 - 7.63e5T + 1.17e12T^{2} \)
59 \( 1 + 1.18e6T + 2.48e12T^{2} \)
61 \( 1 + 2.69e6T + 3.14e12T^{2} \)
67 \( 1 + 9.77e5T + 6.06e12T^{2} \)
71 \( 1 + 8.77e5T + 9.09e12T^{2} \)
73 \( 1 - 3.74e6T + 1.10e13T^{2} \)
79 \( 1 - 6.82e6T + 1.92e13T^{2} \)
83 \( 1 + 5.67e6T + 2.71e13T^{2} \)
89 \( 1 + 6.04e6T + 4.42e13T^{2} \)
97 \( 1 - 5.51e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.82627618556444258388447504049, −10.02108120479896594388988403633, −9.215754330217020067065019024841, −8.667477191812360571986679610770, −7.49143159779136203428148628333, −6.31861869335647182664750598756, −4.44498879966008603812985557946, −3.55921857876246366533408062670, −2.91298064270658517279335603561, −0.70305130597519207600305088251, 0.70305130597519207600305088251, 2.91298064270658517279335603561, 3.55921857876246366533408062670, 4.44498879966008603812985557946, 6.31861869335647182664750598756, 7.49143159779136203428148628333, 8.667477191812360571986679610770, 9.215754330217020067065019024841, 10.02108120479896594388988403633, 11.82627618556444258388447504049

Graph of the $Z$-function along the critical line