Properties

Label 2-13e2-1.1-c1-0-6
Degree $2$
Conductor $169$
Sign $-1$
Analytic cond. $1.34947$
Root an. cond. $1.16166$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.554·2-s + 0.801·3-s − 1.69·4-s − 2.80·5-s − 0.445·6-s − 2.69·7-s + 2.04·8-s − 2.35·9-s + 1.55·10-s − 1.19·11-s − 1.35·12-s + 1.49·14-s − 2.24·15-s + 2.24·16-s + 1.13·17-s + 1.30·18-s + 1.93·19-s + 4.74·20-s − 2.15·21-s + 0.664·22-s − 4.60·23-s + 1.64·24-s + 2.85·25-s − 4.29·27-s + 4.55·28-s − 7.89·29-s + 1.24·30-s + ⋯
L(s)  = 1  − 0.392·2-s + 0.462·3-s − 0.846·4-s − 1.25·5-s − 0.181·6-s − 1.01·7-s + 0.724·8-s − 0.785·9-s + 0.491·10-s − 0.361·11-s − 0.391·12-s + 0.399·14-s − 0.580·15-s + 0.561·16-s + 0.275·17-s + 0.308·18-s + 0.444·19-s + 1.06·20-s − 0.471·21-s + 0.141·22-s − 0.959·23-s + 0.335·24-s + 0.570·25-s − 0.826·27-s + 0.860·28-s − 1.46·29-s + 0.227·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(169\)    =    \(13^{2}\)
Sign: $-1$
Analytic conductor: \(1.34947\)
Root analytic conductor: \(1.16166\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 169,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad13 \( 1 \)
good2 \( 1 + 0.554T + 2T^{2} \)
3 \( 1 - 0.801T + 3T^{2} \)
5 \( 1 + 2.80T + 5T^{2} \)
7 \( 1 + 2.69T + 7T^{2} \)
11 \( 1 + 1.19T + 11T^{2} \)
17 \( 1 - 1.13T + 17T^{2} \)
19 \( 1 - 1.93T + 19T^{2} \)
23 \( 1 + 4.60T + 23T^{2} \)
29 \( 1 + 7.89T + 29T^{2} \)
31 \( 1 - 5.89T + 31T^{2} \)
37 \( 1 - 0.951T + 37T^{2} \)
41 \( 1 - 3.31T + 41T^{2} \)
43 \( 1 - 7.15T + 43T^{2} \)
47 \( 1 + 7.69T + 47T^{2} \)
53 \( 1 - 5.87T + 53T^{2} \)
59 \( 1 + 0.0120T + 59T^{2} \)
61 \( 1 + 8.03T + 61T^{2} \)
67 \( 1 + 9.25T + 67T^{2} \)
71 \( 1 + 13.7T + 71T^{2} \)
73 \( 1 - 12.8T + 73T^{2} \)
79 \( 1 - 0.807T + 79T^{2} \)
83 \( 1 + 16.3T + 83T^{2} \)
89 \( 1 + 14.7T + 89T^{2} \)
97 \( 1 - 3.13T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.33536446210603266440589089391, −11.30646866607090638627281997410, −10.02917266805030379807198096797, −9.161774202653594864080465650357, −8.176587484609426278270266087853, −7.50270959552323509370139984132, −5.77643703948707832010929917193, −4.18529951719078164919223936719, −3.17175749010472632307223793978, 0, 3.17175749010472632307223793978, 4.18529951719078164919223936719, 5.77643703948707832010929917193, 7.50270959552323509370139984132, 8.176587484609426278270266087853, 9.161774202653594864080465650357, 10.02917266805030379807198096797, 11.30646866607090638627281997410, 12.33536446210603266440589089391

Graph of the $Z$-function along the critical line