Properties

Label 2-1386-7.4-c1-0-23
Degree 22
Conductor 13861386
Sign 0.0725+0.997i0.0725 + 0.997i
Analytic cond. 11.067211.0672
Root an. cond. 3.326753.32675
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.207 − 0.358i)5-s + (−2.62 + 0.358i)7-s − 0.999·8-s + (0.207 − 0.358i)10-s + (0.5 − 0.866i)11-s − 1.17·13-s + (−1.62 − 2.09i)14-s + (−0.5 − 0.866i)16-s + (−1.08 + 1.88i)17-s + (−0.414 − 0.717i)19-s + 0.414·20-s + 0.999·22-s + (−1.62 − 2.80i)23-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.0926 − 0.160i)5-s + (−0.990 + 0.135i)7-s − 0.353·8-s + (0.0654 − 0.113i)10-s + (0.150 − 0.261i)11-s − 0.324·13-s + (−0.433 − 0.558i)14-s + (−0.125 − 0.216i)16-s + (−0.263 + 0.456i)17-s + (−0.0950 − 0.164i)19-s + 0.0926·20-s + 0.213·22-s + (−0.338 − 0.585i)23-s + ⋯

Functional equation

Λ(s)=(1386s/2ΓC(s)L(s)=((0.0725+0.997i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0725 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1386s/2ΓC(s+1/2)L(s)=((0.0725+0.997i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0725 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 13861386    =    2327112 \cdot 3^{2} \cdot 7 \cdot 11
Sign: 0.0725+0.997i0.0725 + 0.997i
Analytic conductor: 11.067211.0672
Root analytic conductor: 3.326753.32675
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1386(991,)\chi_{1386} (991, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1386, ( :1/2), 0.0725+0.997i)(2,\ 1386,\ (\ :1/2),\ 0.0725 + 0.997i)

Particular Values

L(1)L(1) \approx 0.64456265730.6445626573
L(12)L(\frac12) \approx 0.64456265730.6445626573
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
3 1 1
7 1+(2.620.358i)T 1 + (2.62 - 0.358i)T
11 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
good5 1+(0.207+0.358i)T+(2.5+4.33i)T2 1 + (0.207 + 0.358i)T + (-2.5 + 4.33i)T^{2}
13 1+1.17T+13T2 1 + 1.17T + 13T^{2}
17 1+(1.081.88i)T+(8.514.7i)T2 1 + (1.08 - 1.88i)T + (-8.5 - 14.7i)T^{2}
19 1+(0.414+0.717i)T+(9.5+16.4i)T2 1 + (0.414 + 0.717i)T + (-9.5 + 16.4i)T^{2}
23 1+(1.62+2.80i)T+(11.5+19.9i)T2 1 + (1.62 + 2.80i)T + (-11.5 + 19.9i)T^{2}
29 1+2.82T+29T2 1 + 2.82T + 29T^{2}
31 1+(3.24+5.61i)T+(15.526.8i)T2 1 + (-3.24 + 5.61i)T + (-15.5 - 26.8i)T^{2}
37 1+(4.82+8.36i)T+(18.5+32.0i)T2 1 + (4.82 + 8.36i)T + (-18.5 + 32.0i)T^{2}
41 1+4.65T+41T2 1 + 4.65T + 41T^{2}
43 1+2.82T+43T2 1 + 2.82T + 43T^{2}
47 1+(4.62+8.00i)T+(23.5+40.7i)T2 1 + (4.62 + 8.00i)T + (-23.5 + 40.7i)T^{2}
53 1+(2.584.47i)T+(26.545.8i)T2 1 + (2.58 - 4.47i)T + (-26.5 - 45.8i)T^{2}
59 1+(1.823.16i)T+(29.551.0i)T2 1 + (1.82 - 3.16i)T + (-29.5 - 51.0i)T^{2}
61 1+(0.7921.37i)T+(30.5+52.8i)T2 1 + (-0.792 - 1.37i)T + (-30.5 + 52.8i)T^{2}
67 1+(6.74+11.6i)T+(33.558.0i)T2 1 + (-6.74 + 11.6i)T + (-33.5 - 58.0i)T^{2}
71 1+13.3T+71T2 1 + 13.3T + 71T^{2}
73 1+(2.41+4.18i)T+(36.563.2i)T2 1 + (-2.41 + 4.18i)T + (-36.5 - 63.2i)T^{2}
79 1+(2.37+4.11i)T+(39.5+68.4i)T2 1 + (2.37 + 4.11i)T + (-39.5 + 68.4i)T^{2}
83 19.82T+83T2 1 - 9.82T + 83T^{2}
89 1+(6.2410.8i)T+(44.5+77.0i)T2 1 + (-6.24 - 10.8i)T + (-44.5 + 77.0i)T^{2}
97 1+10.1T+97T2 1 + 10.1T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.220357982060839557940533711501, −8.560369637468743659283574216933, −7.70742617316236299972913544581, −6.72077057347371523663387637081, −6.22618291882989683056977629327, −5.28979939127568708750041287234, −4.27276199434790416563689152513, −3.44163445302693279683894351679, −2.30229617999755516831390922854, −0.22659812491714184598963774322, 1.51528882943935289287348409276, 2.88633330558794700538444226758, 3.51848597231228586258581817514, 4.61817547246575413571789199545, 5.47412752164126205848966644415, 6.56569202647164996088199418031, 7.09764834662011395415197378905, 8.272343244147741913944752118207, 9.241628047966086435298490054665, 9.849666379413090841142916576333

Graph of the ZZ-function along the critical line