L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.207 − 0.358i)5-s + (−2.62 + 0.358i)7-s − 0.999·8-s + (0.207 − 0.358i)10-s + (0.5 − 0.866i)11-s − 1.17·13-s + (−1.62 − 2.09i)14-s + (−0.5 − 0.866i)16-s + (−1.08 + 1.88i)17-s + (−0.414 − 0.717i)19-s + 0.414·20-s + 0.999·22-s + (−1.62 − 2.80i)23-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.0926 − 0.160i)5-s + (−0.990 + 0.135i)7-s − 0.353·8-s + (0.0654 − 0.113i)10-s + (0.150 − 0.261i)11-s − 0.324·13-s + (−0.433 − 0.558i)14-s + (−0.125 − 0.216i)16-s + (−0.263 + 0.456i)17-s + (−0.0950 − 0.164i)19-s + 0.0926·20-s + 0.213·22-s + (−0.338 − 0.585i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0725 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1386 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0725 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6445626573\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6445626573\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.62 - 0.358i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
good | 5 | \( 1 + (0.207 + 0.358i)T + (-2.5 + 4.33i)T^{2} \) |
| 13 | \( 1 + 1.17T + 13T^{2} \) |
| 17 | \( 1 + (1.08 - 1.88i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.414 + 0.717i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.62 + 2.80i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 2.82T + 29T^{2} \) |
| 31 | \( 1 + (-3.24 + 5.61i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.82 + 8.36i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 4.65T + 41T^{2} \) |
| 43 | \( 1 + 2.82T + 43T^{2} \) |
| 47 | \( 1 + (4.62 + 8.00i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (2.58 - 4.47i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.82 - 3.16i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.792 - 1.37i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.74 + 11.6i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 13.3T + 71T^{2} \) |
| 73 | \( 1 + (-2.41 + 4.18i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.37 + 4.11i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 9.82T + 83T^{2} \) |
| 89 | \( 1 + (-6.24 - 10.8i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 10.1T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.220357982060839557940533711501, −8.560369637468743659283574216933, −7.70742617316236299972913544581, −6.72077057347371523663387637081, −6.22618291882989683056977629327, −5.28979939127568708750041287234, −4.27276199434790416563689152513, −3.44163445302693279683894351679, −2.30229617999755516831390922854, −0.22659812491714184598963774322,
1.51528882943935289287348409276, 2.88633330558794700538444226758, 3.51848597231228586258581817514, 4.61817547246575413571789199545, 5.47412752164126205848966644415, 6.56569202647164996088199418031, 7.09764834662011395415197378905, 8.272343244147741913944752118207, 9.241628047966086435298490054665, 9.849666379413090841142916576333