L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.207 + 0.358i)5-s + (−2.62 + 0.358i)7-s + 0.999·8-s + (0.207 − 0.358i)10-s + (−0.5 + 0.866i)11-s − 1.17·13-s + (1.62 + 2.09i)14-s + (−0.5 − 0.866i)16-s + (1.08 − 1.88i)17-s + (−0.414 − 0.717i)19-s − 0.414·20-s + 0.999·22-s + (1.62 + 2.80i)23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.0926 + 0.160i)5-s + (−0.990 + 0.135i)7-s + 0.353·8-s + (0.0654 − 0.113i)10-s + (−0.150 + 0.261i)11-s − 0.324·13-s + (0.433 + 0.558i)14-s + (−0.125 − 0.216i)16-s + (0.263 − 0.456i)17-s + (−0.0950 − 0.164i)19-s − 0.0926·20-s + 0.213·22-s + (0.338 + 0.585i)23-s + ⋯ |
Λ(s)=(=(1386s/2ΓC(s)L(s)(0.0725+0.997i)Λ(2−s)
Λ(s)=(=(1386s/2ΓC(s+1/2)L(s)(0.0725+0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
1386
= 2⋅32⋅7⋅11
|
Sign: |
0.0725+0.997i
|
Analytic conductor: |
11.0672 |
Root analytic conductor: |
3.32675 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1386(991,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1386, ( :1/2), 0.0725+0.997i)
|
Particular Values
L(1) |
≈ |
0.9902969648 |
L(21) |
≈ |
0.9902969648 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 3 | 1 |
| 7 | 1+(2.62−0.358i)T |
| 11 | 1+(0.5−0.866i)T |
good | 5 | 1+(−0.207−0.358i)T+(−2.5+4.33i)T2 |
| 13 | 1+1.17T+13T2 |
| 17 | 1+(−1.08+1.88i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.414+0.717i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−1.62−2.80i)T+(−11.5+19.9i)T2 |
| 29 | 1−2.82T+29T2 |
| 31 | 1+(−3.24+5.61i)T+(−15.5−26.8i)T2 |
| 37 | 1+(4.82+8.36i)T+(−18.5+32.0i)T2 |
| 41 | 1−4.65T+41T2 |
| 43 | 1+2.82T+43T2 |
| 47 | 1+(−4.62−8.00i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−2.58+4.47i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−1.82+3.16i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−0.792−1.37i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−6.74+11.6i)T+(−33.5−58.0i)T2 |
| 71 | 1−13.3T+71T2 |
| 73 | 1+(−2.41+4.18i)T+(−36.5−63.2i)T2 |
| 79 | 1+(2.37+4.11i)T+(−39.5+68.4i)T2 |
| 83 | 1+9.82T+83T2 |
| 89 | 1+(6.24+10.8i)T+(−44.5+77.0i)T2 |
| 97 | 1+10.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.529818951296537360587761561041, −8.825608951632944417830845977678, −7.80542594501443287958165685185, −7.02897476909572800431686160951, −6.16901182453900406748280458673, −5.11056901136977038405331426200, −4.04172649309179217644802879903, −3.02829206909068152429715690932, −2.24354150718876193339065855400, −0.55407289796744983334991458105,
1.04621127453767368454729911395, 2.70190915678549223913815716721, 3.75773428502498641542591272061, 4.92718593687242269197684456522, 5.73394796241594168143685231731, 6.68078713577740265998364539213, 7.13298533054877379104933178456, 8.340372455464620669009341998868, 8.774630435469290771339669069384, 9.819700189522624510861094223997