Properties

Label 2-1380-1.1-c3-0-4
Degree $2$
Conductor $1380$
Sign $1$
Analytic cond. $81.4226$
Root an. cond. $9.02344$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 5·5-s − 3.02·7-s + 9·9-s − 28.8·11-s − 73.6·13-s − 15·15-s + 2.17·17-s − 32.8·19-s + 9.07·21-s − 23·23-s + 25·25-s − 27·27-s − 64.0·29-s + 203.·31-s + 86.4·33-s − 15.1·35-s + 37.1·37-s + 221.·39-s − 135.·41-s + 122.·43-s + 45·45-s + 206.·47-s − 333.·49-s − 6.52·51-s + 589.·53-s − 144.·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.163·7-s + 0.333·9-s − 0.789·11-s − 1.57·13-s − 0.258·15-s + 0.0310·17-s − 0.396·19-s + 0.0942·21-s − 0.208·23-s + 0.200·25-s − 0.192·27-s − 0.410·29-s + 1.17·31-s + 0.455·33-s − 0.0730·35-s + 0.165·37-s + 0.907·39-s − 0.514·41-s + 0.434·43-s + 0.149·45-s + 0.640·47-s − 0.973·49-s − 0.0179·51-s + 1.52·53-s − 0.353·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1380 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1380\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(81.4226\)
Root analytic conductor: \(9.02344\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1380,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.153059471\)
\(L(\frac12)\) \(\approx\) \(1.153059471\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
5 \( 1 - 5T \)
23 \( 1 + 23T \)
good7 \( 1 + 3.02T + 343T^{2} \)
11 \( 1 + 28.8T + 1.33e3T^{2} \)
13 \( 1 + 73.6T + 2.19e3T^{2} \)
17 \( 1 - 2.17T + 4.91e3T^{2} \)
19 \( 1 + 32.8T + 6.85e3T^{2} \)
29 \( 1 + 64.0T + 2.43e4T^{2} \)
31 \( 1 - 203.T + 2.97e4T^{2} \)
37 \( 1 - 37.1T + 5.06e4T^{2} \)
41 \( 1 + 135.T + 6.89e4T^{2} \)
43 \( 1 - 122.T + 7.95e4T^{2} \)
47 \( 1 - 206.T + 1.03e5T^{2} \)
53 \( 1 - 589.T + 1.48e5T^{2} \)
59 \( 1 + 455.T + 2.05e5T^{2} \)
61 \( 1 - 670.T + 2.26e5T^{2} \)
67 \( 1 + 126.T + 3.00e5T^{2} \)
71 \( 1 + 825.T + 3.57e5T^{2} \)
73 \( 1 - 944.T + 3.89e5T^{2} \)
79 \( 1 + 198.T + 4.93e5T^{2} \)
83 \( 1 + 241.T + 5.71e5T^{2} \)
89 \( 1 - 144.T + 7.04e5T^{2} \)
97 \( 1 + 1.79e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.435944103912039654565934418734, −8.351867692686598636402126868049, −7.48025636534117671802703051980, −6.75680743170725071044078060652, −5.81159974529531376382337385905, −5.09849831316475404103109521637, −4.31146744191869635998802930469, −2.88635990404755970234019314661, −2.02991732189212107868842306619, −0.52791961495958279816005994996, 0.52791961495958279816005994996, 2.02991732189212107868842306619, 2.88635990404755970234019314661, 4.31146744191869635998802930469, 5.09849831316475404103109521637, 5.81159974529531376382337385905, 6.75680743170725071044078060652, 7.48025636534117671802703051980, 8.351867692686598636402126868049, 9.435944103912039654565934418734

Graph of the $Z$-function along the critical line