| L(s) = 1 | + (1.59 + 2.75i)3-s + (−0.598 + 1.03i)5-s + (−3.57 + 6.18i)9-s + (1.07 + 1.85i)11-s − 4.07·13-s − 3.81·15-s + (−1.29 − 2.24i)17-s + (2.11 − 3.66i)19-s + (−4.49 + 7.78i)23-s + (1.78 + 3.08i)25-s − 13.2·27-s + 6.30·29-s + (−2.76 − 4.78i)31-s + (−3.41 + 5.90i)33-s + (−1.31 + 2.28i)37-s + ⋯ |
| L(s) = 1 | + (0.919 + 1.59i)3-s + (−0.267 + 0.463i)5-s + (−1.19 + 2.06i)9-s + (0.322 + 0.559i)11-s − 1.13·13-s − 0.984·15-s + (−0.314 − 0.544i)17-s + (0.485 − 0.840i)19-s + (−0.937 + 1.62i)23-s + (0.356 + 0.617i)25-s − 2.54·27-s + 1.17·29-s + (−0.496 − 0.859i)31-s + (−0.593 + 1.02i)33-s + (−0.216 + 0.374i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1372 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1372 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.619965956\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.619965956\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| good | 3 | \( 1 + (-1.59 - 2.75i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (0.598 - 1.03i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.07 - 1.85i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 4.07T + 13T^{2} \) |
| 17 | \( 1 + (1.29 + 2.24i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.11 + 3.66i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (4.49 - 7.78i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 6.30T + 29T^{2} \) |
| 31 | \( 1 + (2.76 + 4.78i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.31 - 2.28i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 1.34T + 41T^{2} \) |
| 43 | \( 1 + 11.1T + 43T^{2} \) |
| 47 | \( 1 + (-5.52 + 9.56i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.47 - 2.55i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.74 - 8.21i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.03 - 6.99i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.25 - 10.8i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 0.149T + 71T^{2} \) |
| 73 | \( 1 + (-4.62 - 8.00i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.02 + 10.4i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3.15T + 83T^{2} \) |
| 89 | \( 1 + (-6.59 + 11.4i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 8.54T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.910520124745362722524365733940, −9.338816651220001104615081877252, −8.633082412358890299116494174507, −7.59025944045702204689114141395, −7.03316838133019146634669445269, −5.45849847726182088752520574094, −4.78329949167149767527931027068, −3.94737703538413558453868266481, −3.11013605202880323872612038966, −2.25785265374149524890040649446,
0.56119762810649589428714285728, 1.79898046633322330707253155516, 2.71662902097869485115705510848, 3.75148089626342945882414312190, 4.97415441899157452663623840645, 6.32325200041002353612359532485, 6.68853731804098997874066517433, 7.81413085906775722506361087357, 8.225676304388283571969952314489, 8.827265501924511034902943877913