| L(s) = 1 | + (0.900 − 0.433i)2-s + (0.623 − 0.781i)4-s + (0.222 − 0.974i)8-s + 9-s + 1.94i·11-s + (−0.222 − 0.974i)16-s + (0.900 − 0.433i)18-s + (0.846 + 1.75i)22-s − 1.56i·23-s − 25-s − 1.24·29-s + (−0.623 − 0.781i)32-s + (0.623 − 0.781i)36-s + 0.445·37-s − 0.867i·43-s + (1.52 + 1.21i)44-s + ⋯ |
| L(s) = 1 | + (0.900 − 0.433i)2-s + (0.623 − 0.781i)4-s + (0.222 − 0.974i)8-s + 9-s + 1.94i·11-s + (−0.222 − 0.974i)16-s + (0.900 − 0.433i)18-s + (0.846 + 1.75i)22-s − 1.56i·23-s − 25-s − 1.24·29-s + (−0.623 − 0.781i)32-s + (0.623 − 0.781i)36-s + 0.445·37-s − 0.867i·43-s + (1.52 + 1.21i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1372 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.781 + 0.623i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1372 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.781 + 0.623i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.915100537\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.915100537\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.900 + 0.433i)T \) |
| 7 | \( 1 \) |
| good | 3 | \( 1 - T^{2} \) |
| 5 | \( 1 + T^{2} \) |
| 11 | \( 1 - 1.94iT - T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + 1.56iT - T^{2} \) |
| 29 | \( 1 + 1.24T + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - 0.445T + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + 0.867iT - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + 1.80T + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - 1.56iT - T^{2} \) |
| 71 | \( 1 - 0.867iT - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - 0.867iT - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.937115686760187840894206042153, −9.248594847166064193556858655934, −7.77274878894390937841261791184, −7.10240648599961656956944271334, −6.42777720548225877206904851051, −5.27817135583631037551078744849, −4.43849193313729779426138301934, −3.93642090207885808573866183165, −2.43829543918284551206004420041, −1.65479257170231372030708350597,
1.70565747801894732789870220592, 3.22864169232827383148160280659, 3.77380907480696221800784992438, 4.87745400424388120671838243907, 5.83008141455236100331674650935, 6.31358204091571466139587615880, 7.52168740282223028389534751318, 7.894702867433736406253955734793, 8.977374239783769962513147399795, 9.812910958266163665458488483630