| L(s) = 1 | + (0.766 − 0.642i)2-s + (0.173 − 0.984i)3-s + (0.173 − 0.984i)4-s + (−0.5 − 0.866i)6-s + (−0.500 − 0.866i)8-s + (−0.939 − 0.342i)9-s + (−0.173 + 0.300i)11-s + (−0.939 − 0.342i)12-s + (−0.939 − 0.342i)16-s + (−0.173 − 0.984i)17-s + (−0.939 + 0.342i)18-s + (0.766 + 0.642i)19-s + (0.0603 + 0.342i)22-s + (−0.939 + 0.342i)24-s + (0.173 − 0.984i)25-s + ⋯ |
| L(s) = 1 | + (0.766 − 0.642i)2-s + (0.173 − 0.984i)3-s + (0.173 − 0.984i)4-s + (−0.5 − 0.866i)6-s + (−0.500 − 0.866i)8-s + (−0.939 − 0.342i)9-s + (−0.173 + 0.300i)11-s + (−0.939 − 0.342i)12-s + (−0.939 − 0.342i)16-s + (−0.173 − 0.984i)17-s + (−0.939 + 0.342i)18-s + (0.766 + 0.642i)19-s + (0.0603 + 0.342i)22-s + (−0.939 + 0.342i)24-s + (0.173 − 0.984i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.755 + 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.755 + 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.602045141\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.602045141\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.766 + 0.642i)T \) |
| 3 | \( 1 + (-0.173 + 0.984i)T \) |
| 19 | \( 1 + (-0.766 - 0.642i)T \) |
| good | 5 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + (0.173 - 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 17 | \( 1 + (0.173 + 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 23 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.0603 - 0.342i)T + (-0.939 + 0.342i)T^{2} \) |
| 43 | \( 1 + (-0.347 - 1.96i)T + (-0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 53 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 59 | \( 1 + (-1.76 - 0.642i)T + (0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 67 | \( 1 + (-0.266 - 0.223i)T + (0.173 + 0.984i)T^{2} \) |
| 71 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 73 | \( 1 + (-0.266 + 0.223i)T + (0.173 - 0.984i)T^{2} \) |
| 79 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + 1.87T + T^{2} \) |
| 89 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 97 | \( 1 + (-1.17 + 0.984i)T + (0.173 - 0.984i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.619456490117970013695261496658, −8.713982535587529758117230094868, −7.68181677585047583123249197623, −6.94098119011121486150418510080, −6.09581860216084658239253413026, −5.30515520588741428781427334483, −4.28947964036128056313822063769, −3.08127421004396755882888516827, −2.34839185203351681768438371412, −1.09625756941108512369313565697,
2.41586123608210884059248430866, 3.48166300700184827308125147625, 4.10053111617777808336367027918, 5.22152524147048888472009234152, 5.62780580823912852260786235550, 6.75592807254274910119958862030, 7.62402841541700319563492272157, 8.564564498685700264987636621585, 9.043788877815124537404811097399, 10.09886937995697438883398568306