| L(s) = 1 | + (0.866 + 0.5i)2-s + (0.5 − 0.866i)3-s + (0.499 + 0.866i)4-s + i·5-s + (0.866 − 0.499i)6-s + (−0.866 + 0.5i)7-s + 0.999i·8-s + (−0.499 − 0.866i)9-s + (−0.5 + 0.866i)10-s + (0.5 + 0.866i)11-s + 0.999·12-s − 0.999·14-s + (0.866 + 0.5i)15-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s − 0.999i·18-s + ⋯ |
| L(s) = 1 | + (0.866 + 0.5i)2-s + (0.5 − 0.866i)3-s + (0.499 + 0.866i)4-s + i·5-s + (0.866 − 0.499i)6-s + (−0.866 + 0.5i)7-s + 0.999i·8-s + (−0.499 − 0.866i)9-s + (−0.5 + 0.866i)10-s + (0.5 + 0.866i)11-s + 0.999·12-s − 0.999·14-s + (0.866 + 0.5i)15-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s − 0.999i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.532 - 0.846i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.532 - 0.846i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.906287018\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.906287018\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 - T \) |
| good | 5 | \( 1 - iT - T^{2} \) |
| 7 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + iT - T^{2} \) |
| 31 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + 2iT - T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 - iT - T^{2} \) |
| 53 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 - T + T^{2} \) |
| 61 | \( 1 + iT - T^{2} \) |
| 67 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.645918546414351168286465201181, −9.100060567986719593763359230471, −7.905107337216527733307352372442, −7.25734553402050569220586194631, −6.61305250744214630442010738315, −6.16080649644217841134649876789, −4.95740089069718802334996649213, −3.65098847549619105419382397698, −2.91939561566138770044117871976, −2.16692757118555635312731075418,
1.30411642960681408741818058422, 2.93934470260157838031725274516, 3.60754821405208334200318113799, 4.42289766872223933828040861818, 5.20572034726390215150643826271, 6.08633487566498625649392253339, 7.01914441030704218190678910829, 8.414123890287504828742761318302, 8.913078008207208663864727368312, 9.953801215529687821272760207540