L(s) = 1 | + (−0.656 + 0.656i)3-s + (1.83 + 1.27i)5-s + (0.769 + 0.769i)7-s + 2.13i·9-s − 3.97i·11-s + (1.99 + 1.99i)13-s + (−2.04 + 0.370i)15-s + (0.707 − 0.707i)17-s + 4.72·19-s − 1.00·21-s + (5.54 − 5.54i)23-s + (1.75 + 4.68i)25-s + (−3.37 − 3.37i)27-s + 1.45i·29-s + 10.2i·31-s + ⋯ |
L(s) = 1 | + (−0.378 + 0.378i)3-s + (0.822 + 0.569i)5-s + (0.290 + 0.290i)7-s + 0.712i·9-s − 1.19i·11-s + (0.553 + 0.553i)13-s + (−0.527 + 0.0957i)15-s + (0.171 − 0.171i)17-s + 1.08·19-s − 0.220·21-s + (1.15 − 1.15i)23-s + (0.351 + 0.936i)25-s + (−0.649 − 0.649i)27-s + 0.269i·29-s + 1.84i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.365 - 0.930i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.365 - 0.930i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.847072344\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.847072344\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1.83 - 1.27i)T \) |
| 17 | \( 1 + (-0.707 + 0.707i)T \) |
good | 3 | \( 1 + (0.656 - 0.656i)T - 3iT^{2} \) |
| 7 | \( 1 + (-0.769 - 0.769i)T + 7iT^{2} \) |
| 11 | \( 1 + 3.97iT - 11T^{2} \) |
| 13 | \( 1 + (-1.99 - 1.99i)T + 13iT^{2} \) |
| 19 | \( 1 - 4.72T + 19T^{2} \) |
| 23 | \( 1 + (-5.54 + 5.54i)T - 23iT^{2} \) |
| 29 | \( 1 - 1.45iT - 29T^{2} \) |
| 31 | \( 1 - 10.2iT - 31T^{2} \) |
| 37 | \( 1 + (5.72 - 5.72i)T - 37iT^{2} \) |
| 41 | \( 1 + 0.799T + 41T^{2} \) |
| 43 | \( 1 + (0.242 - 0.242i)T - 43iT^{2} \) |
| 47 | \( 1 + (8.04 + 8.04i)T + 47iT^{2} \) |
| 53 | \( 1 + (-1.37 - 1.37i)T + 53iT^{2} \) |
| 59 | \( 1 - 3.92T + 59T^{2} \) |
| 61 | \( 1 - 13.8T + 61T^{2} \) |
| 67 | \( 1 + (-1.73 - 1.73i)T + 67iT^{2} \) |
| 71 | \( 1 - 9.93iT - 71T^{2} \) |
| 73 | \( 1 + (2.58 + 2.58i)T + 73iT^{2} \) |
| 79 | \( 1 + 12.5T + 79T^{2} \) |
| 83 | \( 1 + (5.64 - 5.64i)T - 83iT^{2} \) |
| 89 | \( 1 - 6.69iT - 89T^{2} \) |
| 97 | \( 1 + (7.60 - 7.60i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.00698042975901317667339535403, −8.792589798240063141925851379019, −8.452171480947854014812177805912, −7.06814153392953475294998970859, −6.48189363611543533345790566162, −5.30050013586076153767827414146, −5.14335024371127220456165571432, −3.55898165761405757126235669354, −2.68073905965793354090387479759, −1.36466260393689145476235200336,
0.921616158972701692642297781229, 1.83825771098622636459728167615, 3.30116181622953278391109499753, 4.45372628081157303879501824153, 5.43397176448348663482263730170, 5.98130786557161717842257541443, 7.06310399665976189557972709279, 7.64050248735431362296145449706, 8.759069731115166223349941164315, 9.615170182383626471767778138592