| L(s) = 1 | + (−1.28 − 2.21i)3-s + 0.561i·5-s + (2.21 + 1.28i)7-s + (−1.78 + 3.08i)9-s + (−4.43 + 2.56i)11-s + (1.24 − 0.719i)15-s + (2.84 − 4.92i)17-s + (4.43 + 2.56i)19-s − 6.56i·21-s + (−4 − 6.92i)23-s + 4.68·25-s + 1.43·27-s + (1 + 1.73i)29-s − 4i·31-s + (11.3 + 6.56i)33-s + ⋯ |
| L(s) = 1 | + (−0.739 − 1.28i)3-s + 0.251i·5-s + (0.838 + 0.484i)7-s + (−0.593 + 1.02i)9-s + (−1.33 + 0.772i)11-s + (0.321 − 0.185i)15-s + (0.689 − 1.19i)17-s + (1.01 + 0.587i)19-s − 1.43i·21-s + (−0.834 − 1.44i)23-s + 0.936·25-s + 0.276·27-s + (0.185 + 0.321i)29-s − 0.718i·31-s + (1.97 + 1.14i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0771 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0771 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.202698967\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.202698967\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
| good | 3 | \( 1 + (1.28 + 2.21i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 0.561iT - 5T^{2} \) |
| 7 | \( 1 + (-2.21 - 1.28i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (4.43 - 2.56i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.84 + 4.92i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.43 - 2.56i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4 + 6.92i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1 - 1.73i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4iT - 31T^{2} \) |
| 37 | \( 1 + (-8.38 + 4.84i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.70 + 1.56i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.71 + 4.70i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 0.315iT - 47T^{2} \) |
| 53 | \( 1 - 3.12T + 53T^{2} \) |
| 59 | \( 1 + (4.43 + 2.56i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5.56 - 9.63i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.43 + 2.56i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (6.65 + 3.84i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 6iT - 73T^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + 2.24iT - 83T^{2} \) |
| 89 | \( 1 + (-8.66 + 5i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (7.14 + 4.12i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.425556771531291170896099830862, −8.213198921444347537261654251503, −7.59909204427250358947990642213, −7.15324025852364810179516494398, −6.01390849983842934441205526879, −5.38762179396391275054469431007, −4.58951599214494589023023710366, −2.78542316297166651237670568866, −2.01019100074603563484998375415, −0.64541948068779376037805825399,
1.13739928461083132435550556852, 2.99252871270861561782677401895, 3.97680483379128826602630211616, 4.89570008770867140134468729061, 5.38963059827585632046480432206, 6.17261333743161442365623440663, 7.71300654571312154743477924262, 8.059397480504980650710425158513, 9.225031597332471402478890628469, 9.991788201733549593096802658119