Properties

Label 2-1350-15.2-c1-0-5
Degree $2$
Conductor $1350$
Sign $-0.437 - 0.899i$
Analytic cond. $10.7798$
Root an. cond. $3.28326$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.707i)2-s − 1.00i·4-s + (1.22 + 1.22i)7-s + (0.707 + 0.707i)8-s − 1.73·14-s − 1.00·16-s + (−4.24 + 4.24i)17-s i·19-s + (4.24 + 4.24i)23-s + (1.22 − 1.22i)28-s − 10.3·29-s + 7·31-s + (0.707 − 0.707i)32-s − 6i·34-s + (6.12 + 6.12i)37-s + (0.707 + 0.707i)38-s + ⋯
L(s)  = 1  + (−0.499 + 0.499i)2-s − 0.500i·4-s + (0.462 + 0.462i)7-s + (0.250 + 0.250i)8-s − 0.462·14-s − 0.250·16-s + (−1.02 + 1.02i)17-s − 0.229i·19-s + (0.884 + 0.884i)23-s + (0.231 − 0.231i)28-s − 1.92·29-s + 1.25·31-s + (0.125 − 0.125i)32-s − 1.02i·34-s + (1.00 + 1.00i)37-s + (0.114 + 0.114i)38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.437 - 0.899i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.437 - 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1350\)    =    \(2 \cdot 3^{3} \cdot 5^{2}\)
Sign: $-0.437 - 0.899i$
Analytic conductor: \(10.7798\)
Root analytic conductor: \(3.28326\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1350} (107, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1350,\ (\ :1/2),\ -0.437 - 0.899i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.044265200\)
\(L(\frac12)\) \(\approx\) \(1.044265200\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.707 - 0.707i)T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + (-1.22 - 1.22i)T + 7iT^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 - 13iT^{2} \)
17 \( 1 + (4.24 - 4.24i)T - 17iT^{2} \)
19 \( 1 + iT - 19T^{2} \)
23 \( 1 + (-4.24 - 4.24i)T + 23iT^{2} \)
29 \( 1 + 10.3T + 29T^{2} \)
31 \( 1 - 7T + 31T^{2} \)
37 \( 1 + (-6.12 - 6.12i)T + 37iT^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 + (1.22 - 1.22i)T - 43iT^{2} \)
47 \( 1 - 47iT^{2} \)
53 \( 1 + (-8.48 - 8.48i)T + 53iT^{2} \)
59 \( 1 + 10.3T + 59T^{2} \)
61 \( 1 - 5T + 61T^{2} \)
67 \( 1 + (7.34 + 7.34i)T + 67iT^{2} \)
71 \( 1 - 10.3iT - 71T^{2} \)
73 \( 1 + (8.57 - 8.57i)T - 73iT^{2} \)
79 \( 1 - 13iT - 79T^{2} \)
83 \( 1 + (-4.24 - 4.24i)T + 83iT^{2} \)
89 \( 1 - 10.3T + 89T^{2} \)
97 \( 1 + (-6.12 - 6.12i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.642730809841484461149969709354, −8.981745418593224473826828974507, −8.288518530224666217556067836335, −7.52826539603289712069000422792, −6.63014424433102306854535550566, −5.82867178915113534617917488329, −4.98142418280382511875373978787, −3.98166576338394932210969768525, −2.55043497088047339196635734269, −1.38822748557989546825409967720, 0.53038890879752740608558706836, 1.94094925174734476547812087214, 2.97404724489201598206639185458, 4.17806872238576729423685088755, 4.88956214321609264556287449138, 6.14045086861577677841951339377, 7.17324719902625095893494538193, 7.70581614263989836076679329103, 8.764304954639611809708428761377, 9.265976322787672410733787142119

Graph of the $Z$-function along the critical line