| L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (1.22 + 1.22i)7-s + (0.707 + 0.707i)8-s − 1.73·14-s − 1.00·16-s + (−4.24 + 4.24i)17-s − i·19-s + (4.24 + 4.24i)23-s + (1.22 − 1.22i)28-s − 10.3·29-s + 7·31-s + (0.707 − 0.707i)32-s − 6i·34-s + (6.12 + 6.12i)37-s + (0.707 + 0.707i)38-s + ⋯ |
| L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (0.462 + 0.462i)7-s + (0.250 + 0.250i)8-s − 0.462·14-s − 0.250·16-s + (−1.02 + 1.02i)17-s − 0.229i·19-s + (0.884 + 0.884i)23-s + (0.231 − 0.231i)28-s − 1.92·29-s + 1.25·31-s + (0.125 − 0.125i)32-s − 1.02i·34-s + (1.00 + 1.00i)37-s + (0.114 + 0.114i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.437 - 0.899i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.437 - 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.044265200\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.044265200\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (-1.22 - 1.22i)T + 7iT^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 - 13iT^{2} \) |
| 17 | \( 1 + (4.24 - 4.24i)T - 17iT^{2} \) |
| 19 | \( 1 + iT - 19T^{2} \) |
| 23 | \( 1 + (-4.24 - 4.24i)T + 23iT^{2} \) |
| 29 | \( 1 + 10.3T + 29T^{2} \) |
| 31 | \( 1 - 7T + 31T^{2} \) |
| 37 | \( 1 + (-6.12 - 6.12i)T + 37iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + (1.22 - 1.22i)T - 43iT^{2} \) |
| 47 | \( 1 - 47iT^{2} \) |
| 53 | \( 1 + (-8.48 - 8.48i)T + 53iT^{2} \) |
| 59 | \( 1 + 10.3T + 59T^{2} \) |
| 61 | \( 1 - 5T + 61T^{2} \) |
| 67 | \( 1 + (7.34 + 7.34i)T + 67iT^{2} \) |
| 71 | \( 1 - 10.3iT - 71T^{2} \) |
| 73 | \( 1 + (8.57 - 8.57i)T - 73iT^{2} \) |
| 79 | \( 1 - 13iT - 79T^{2} \) |
| 83 | \( 1 + (-4.24 - 4.24i)T + 83iT^{2} \) |
| 89 | \( 1 - 10.3T + 89T^{2} \) |
| 97 | \( 1 + (-6.12 - 6.12i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.642730809841484461149969709354, −8.981745418593224473826828974507, −8.288518530224666217556067836335, −7.52826539603289712069000422792, −6.63014424433102306854535550566, −5.82867178915113534617917488329, −4.98142418280382511875373978787, −3.98166576338394932210969768525, −2.55043497088047339196635734269, −1.38822748557989546825409967720,
0.53038890879752740608558706836, 1.94094925174734476547812087214, 2.97404724489201598206639185458, 4.17806872238576729423685088755, 4.88956214321609264556287449138, 6.14045086861577677841951339377, 7.17324719902625095893494538193, 7.70581614263989836076679329103, 8.764304954639611809708428761377, 9.265976322787672410733787142119