L(s) = 1 | + 2-s + 4-s + 4.35·7-s + 8-s − 4.35·11-s + 4.35·14-s + 16-s + 4·17-s + 6·19-s − 4.35·22-s − 2·23-s + 4.35·28-s + 7·31-s + 32-s + 4·34-s − 8.71·37-s + 6·38-s + 8.71·41-s − 8.71·43-s − 4.35·44-s − 2·46-s + 2·47-s + 12.0·49-s − 3·53-s + 4.35·56-s − 8.71·59-s − 4·61-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + 1.64·7-s + 0.353·8-s − 1.31·11-s + 1.16·14-s + 0.250·16-s + 0.970·17-s + 1.37·19-s − 0.929·22-s − 0.417·23-s + 0.823·28-s + 1.25·31-s + 0.176·32-s + 0.685·34-s − 1.43·37-s + 0.973·38-s + 1.36·41-s − 1.32·43-s − 0.657·44-s − 0.294·46-s + 0.291·47-s + 1.71·49-s − 0.412·53-s + 0.582·56-s − 1.13·59-s − 0.512·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.075418666\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.075418666\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 4.35T + 7T^{2} \) |
| 11 | \( 1 + 4.35T + 11T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 - 4T + 17T^{2} \) |
| 19 | \( 1 - 6T + 19T^{2} \) |
| 23 | \( 1 + 2T + 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 7T + 31T^{2} \) |
| 37 | \( 1 + 8.71T + 37T^{2} \) |
| 41 | \( 1 - 8.71T + 41T^{2} \) |
| 43 | \( 1 + 8.71T + 43T^{2} \) |
| 47 | \( 1 - 2T + 47T^{2} \) |
| 53 | \( 1 + 3T + 53T^{2} \) |
| 59 | \( 1 + 8.71T + 59T^{2} \) |
| 61 | \( 1 + 4T + 61T^{2} \) |
| 67 | \( 1 - 8.71T + 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 4.35T + 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 5T + 83T^{2} \) |
| 89 | \( 1 - 8.71T + 89T^{2} \) |
| 97 | \( 1 + 4.35T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.831766250536615909555991793629, −8.521640902459070146262123743588, −7.80286480238678608669437815722, −7.41152490360258934930589333356, −6.03490131305999332310631451392, −5.12800961747859868254216974970, −4.85036360342555564090829170734, −3.53307271168479685023107989173, −2.48726936281705293448809254923, −1.31472464666321829271225485775,
1.31472464666321829271225485775, 2.48726936281705293448809254923, 3.53307271168479685023107989173, 4.85036360342555564090829170734, 5.12800961747859868254216974970, 6.03490131305999332310631451392, 7.41152490360258934930589333356, 7.80286480238678608669437815722, 8.521640902459070146262123743588, 9.831766250536615909555991793629