L(s) = 1 | + 2-s + 4-s + 4.35·7-s + 8-s − 4.35·11-s + 4.35·14-s + 16-s + 4·17-s + 6·19-s − 4.35·22-s − 2·23-s + 4.35·28-s + 7·31-s + 32-s + 4·34-s − 8.71·37-s + 6·38-s + 8.71·41-s − 8.71·43-s − 4.35·44-s − 2·46-s + 2·47-s + 12.0·49-s − 3·53-s + 4.35·56-s − 8.71·59-s − 4·61-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + 1.64·7-s + 0.353·8-s − 1.31·11-s + 1.16·14-s + 0.250·16-s + 0.970·17-s + 1.37·19-s − 0.929·22-s − 0.417·23-s + 0.823·28-s + 1.25·31-s + 0.176·32-s + 0.685·34-s − 1.43·37-s + 0.973·38-s + 1.36·41-s − 1.32·43-s − 0.657·44-s − 0.294·46-s + 0.291·47-s + 1.71·49-s − 0.412·53-s + 0.582·56-s − 1.13·59-s − 0.512·61-s + ⋯ |
Λ(s)=(=(1350s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1350s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.075418666 |
L(21) |
≈ |
3.075418666 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−4.35T+7T2 |
| 11 | 1+4.35T+11T2 |
| 13 | 1+13T2 |
| 17 | 1−4T+17T2 |
| 19 | 1−6T+19T2 |
| 23 | 1+2T+23T2 |
| 29 | 1+29T2 |
| 31 | 1−7T+31T2 |
| 37 | 1+8.71T+37T2 |
| 41 | 1−8.71T+41T2 |
| 43 | 1+8.71T+43T2 |
| 47 | 1−2T+47T2 |
| 53 | 1+3T+53T2 |
| 59 | 1+8.71T+59T2 |
| 61 | 1+4T+61T2 |
| 67 | 1−8.71T+67T2 |
| 71 | 1+71T2 |
| 73 | 1−4.35T+73T2 |
| 79 | 1+79T2 |
| 83 | 1+5T+83T2 |
| 89 | 1−8.71T+89T2 |
| 97 | 1+4.35T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.831766250536615909555991793629, −8.521640902459070146262123743588, −7.80286480238678608669437815722, −7.41152490360258934930589333356, −6.03490131305999332310631451392, −5.12800961747859868254216974970, −4.85036360342555564090829170734, −3.53307271168479685023107989173, −2.48726936281705293448809254923, −1.31472464666321829271225485775,
1.31472464666321829271225485775, 2.48726936281705293448809254923, 3.53307271168479685023107989173, 4.85036360342555564090829170734, 5.12800961747859868254216974970, 6.03490131305999332310631451392, 7.41152490360258934930589333356, 7.80286480238678608669437815722, 8.521640902459070146262123743588, 9.831766250536615909555991793629