Properties

Label 2-135-135.113-c1-0-11
Degree $2$
Conductor $135$
Sign $0.941 + 0.338i$
Analytic cond. $1.07798$
Root an. cond. $1.03825$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.35 + 0.118i)2-s + (0.801 − 1.53i)3-s + (−0.144 − 0.0254i)4-s + (1.16 + 1.91i)5-s + (1.26 − 1.98i)6-s + (0.495 + 0.346i)7-s + (−2.82 − 0.756i)8-s + (−1.71 − 2.46i)9-s + (1.34 + 2.72i)10-s + (−0.461 + 1.26i)11-s + (−0.155 + 0.201i)12-s + (−0.157 − 1.80i)13-s + (0.630 + 0.529i)14-s + (3.86 − 0.253i)15-s + (−3.46 − 1.26i)16-s + (0.596 − 0.159i)17-s + ⋯
L(s)  = 1  + (0.958 + 0.0838i)2-s + (0.462 − 0.886i)3-s + (−0.0722 − 0.0127i)4-s + (0.519 + 0.854i)5-s + (0.518 − 0.811i)6-s + (0.187 + 0.131i)7-s + (−0.998 − 0.267i)8-s + (−0.571 − 0.820i)9-s + (0.426 + 0.862i)10-s + (−0.139 + 0.382i)11-s + (−0.0447 + 0.0581i)12-s + (−0.0437 − 0.499i)13-s + (0.168 + 0.141i)14-s + (0.997 − 0.0655i)15-s + (−0.865 − 0.315i)16-s + (0.144 − 0.0387i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.941 + 0.338i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.941 + 0.338i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(135\)    =    \(3^{3} \cdot 5\)
Sign: $0.941 + 0.338i$
Analytic conductor: \(1.07798\)
Root analytic conductor: \(1.03825\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{135} (113, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 135,\ (\ :1/2),\ 0.941 + 0.338i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.73298 - 0.301781i\)
\(L(\frac12)\) \(\approx\) \(1.73298 - 0.301781i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.801 + 1.53i)T \)
5 \( 1 + (-1.16 - 1.91i)T \)
good2 \( 1 + (-1.35 - 0.118i)T + (1.96 + 0.347i)T^{2} \)
7 \( 1 + (-0.495 - 0.346i)T + (2.39 + 6.57i)T^{2} \)
11 \( 1 + (0.461 - 1.26i)T + (-8.42 - 7.07i)T^{2} \)
13 \( 1 + (0.157 + 1.80i)T + (-12.8 + 2.25i)T^{2} \)
17 \( 1 + (-0.596 + 0.159i)T + (14.7 - 8.5i)T^{2} \)
19 \( 1 + (6.66 - 3.84i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-4.35 - 6.22i)T + (-7.86 + 21.6i)T^{2} \)
29 \( 1 + (-4.15 + 3.48i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (-0.651 + 3.69i)T + (-29.1 - 10.6i)T^{2} \)
37 \( 1 + (1.29 + 4.82i)T + (-32.0 + 18.5i)T^{2} \)
41 \( 1 + (-7.43 + 8.86i)T + (-7.11 - 40.3i)T^{2} \)
43 \( 1 + (0.466 + 1.00i)T + (-27.6 + 32.9i)T^{2} \)
47 \( 1 + (2.99 - 4.27i)T + (-16.0 - 44.1i)T^{2} \)
53 \( 1 + (-0.231 + 0.231i)T - 53iT^{2} \)
59 \( 1 + (-9.76 + 3.55i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (-0.173 - 0.984i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (-1.61 + 0.141i)T + (65.9 - 11.6i)T^{2} \)
71 \( 1 + (8.27 + 4.77i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + (2.09 - 7.80i)T + (-63.2 - 36.5i)T^{2} \)
79 \( 1 + (5.86 + 6.98i)T + (-13.7 + 77.7i)T^{2} \)
83 \( 1 + (0.973 - 11.1i)T + (-81.7 - 14.4i)T^{2} \)
89 \( 1 + (-3.58 - 6.20i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-9.46 + 4.41i)T + (62.3 - 74.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.20704878092436722034354280638, −12.61784788403402947500020101849, −11.47471684914479027899577213535, −10.08389667678717828798770495950, −8.911519147754877803986059570659, −7.60522987538613060602469285219, −6.42892603134489583985042420421, −5.53910336288374237663756307545, −3.73081376221076334565353093521, −2.37886990831886313287757452112, 2.77808740351827044287333493702, 4.42221565178092042457384365876, 4.90616321863577152001769558714, 6.30074300467520930705484312092, 8.538167493338130996409644416057, 8.897167373462639188621827235320, 10.19341183779262798494794679453, 11.33619817690539321009276986008, 12.66946670818365189984830300171, 13.31674288657680231744116248412

Graph of the $Z$-function along the critical line