Properties

Label 2-135-135.103-c2-0-9
Degree $2$
Conductor $135$
Sign $0.949 + 0.312i$
Analytic cond. $3.67848$
Root an. cond. $1.91793$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.263 − 3.01i)2-s + (0.677 + 2.92i)3-s + (−5.09 − 0.898i)4-s + (0.0911 + 4.99i)5-s + (8.99 − 1.27i)6-s + (5.64 + 3.95i)7-s + (−0.921 + 3.43i)8-s + (−8.08 + 3.95i)9-s + (15.1 + 1.04i)10-s + (17.8 + 6.50i)11-s + (−0.825 − 15.5i)12-s + (−1.37 − 15.6i)13-s + (13.4 − 15.9i)14-s + (−14.5 + 3.65i)15-s + (−9.32 − 3.39i)16-s + (5.77 + 21.5i)17-s + ⋯
L(s)  = 1  + (0.131 − 1.50i)2-s + (0.225 + 0.974i)3-s + (−1.27 − 0.224i)4-s + (0.0182 + 0.999i)5-s + (1.49 − 0.212i)6-s + (0.806 + 0.564i)7-s + (−0.115 + 0.429i)8-s + (−0.898 + 0.439i)9-s + (1.51 + 0.104i)10-s + (1.62 + 0.591i)11-s + (−0.0687 − 1.29i)12-s + (−0.105 − 1.20i)13-s + (0.958 − 1.14i)14-s + (−0.969 + 0.243i)15-s + (−0.582 − 0.212i)16-s + (0.339 + 1.26i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.949 + 0.312i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.949 + 0.312i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(135\)    =    \(3^{3} \cdot 5\)
Sign: $0.949 + 0.312i$
Analytic conductor: \(3.67848\)
Root analytic conductor: \(1.91793\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{135} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 135,\ (\ :1),\ 0.949 + 0.312i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.67767 - 0.268686i\)
\(L(\frac12)\) \(\approx\) \(1.67767 - 0.268686i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.677 - 2.92i)T \)
5 \( 1 + (-0.0911 - 4.99i)T \)
good2 \( 1 + (-0.263 + 3.01i)T + (-3.93 - 0.694i)T^{2} \)
7 \( 1 + (-5.64 - 3.95i)T + (16.7 + 46.0i)T^{2} \)
11 \( 1 + (-17.8 - 6.50i)T + (92.6 + 77.7i)T^{2} \)
13 \( 1 + (1.37 + 15.6i)T + (-166. + 29.3i)T^{2} \)
17 \( 1 + (-5.77 - 21.5i)T + (-250. + 144.5i)T^{2} \)
19 \( 1 + (2.26 - 1.30i)T + (180.5 - 312. i)T^{2} \)
23 \( 1 + (-2.27 + 1.59i)T + (180. - 497. i)T^{2} \)
29 \( 1 + (13.8 + 16.4i)T + (-146. + 828. i)T^{2} \)
31 \( 1 + (-8.08 + 45.8i)T + (-903. - 328. i)T^{2} \)
37 \( 1 + (1.91 + 7.14i)T + (-1.18e3 + 684.5i)T^{2} \)
41 \( 1 + (4.64 + 3.90i)T + (291. + 1.65e3i)T^{2} \)
43 \( 1 + (-22.7 - 48.6i)T + (-1.18e3 + 1.41e3i)T^{2} \)
47 \( 1 + (-19.1 - 13.4i)T + (755. + 2.07e3i)T^{2} \)
53 \( 1 + (-29.7 - 29.7i)T + 2.80e3iT^{2} \)
59 \( 1 + (37.7 + 103. i)T + (-2.66e3 + 2.23e3i)T^{2} \)
61 \( 1 + (12.4 + 70.6i)T + (-3.49e3 + 1.27e3i)T^{2} \)
67 \( 1 + (61.2 - 5.35i)T + (4.42e3 - 779. i)T^{2} \)
71 \( 1 + (-12.8 + 22.2i)T + (-2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (-18.0 + 67.4i)T + (-4.61e3 - 2.66e3i)T^{2} \)
79 \( 1 + (-1.02 - 1.22i)T + (-1.08e3 + 6.14e3i)T^{2} \)
83 \( 1 + (58.6 + 5.12i)T + (6.78e3 + 1.19e3i)T^{2} \)
89 \( 1 + (45.4 - 26.2i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (-50.1 + 23.4i)T + (6.04e3 - 7.20e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.59662630420856015899374250533, −11.58794194700563075949880883867, −10.97971739800290970965078972058, −10.08205050628452110637932954099, −9.310831611983080185139594206277, −7.958908197383550840313879972023, −6.00561910404088182885085292479, −4.36066507862372293466590522134, −3.40630485404309252178724729782, −2.06168661431968710471289790690, 1.32320952472343254761374607033, 4.26190393888499066079577388046, 5.48931626077571793801911765555, 6.75723139428995854596098740588, 7.41649910147091387752070520682, 8.704642416853275048588382539191, 9.049643411881029165741356130062, 11.45104952700172661600408584177, 12.12326430309251907218934798371, 13.69074725071432380652524763532

Graph of the $Z$-function along the critical line