L(s) = 1 | − i·3-s + i·7-s − 9-s + 2·13-s − 2i·19-s + 21-s + 25-s + i·27-s − 2i·39-s − 49-s − 2·57-s − 2·61-s − i·63-s − i·75-s + 2i·79-s + ⋯ |
L(s) = 1 | − i·3-s + i·7-s − 9-s + 2·13-s − 2i·19-s + 21-s + 25-s + i·27-s − 2i·39-s − 49-s − 2·57-s − 2·61-s − i·63-s − i·75-s + 2i·79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.128234316\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.128234316\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 7 | \( 1 - iT \) |
good | 5 | \( 1 - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - 2T + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + 2iT - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + 2T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - 2iT - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.354954356029106958045375089875, −8.741660049457947189601230705677, −8.292130196846028609239823856448, −7.13977745847292536294915545202, −6.42183063986854377059349482217, −5.77339543976341204223818388542, −4.79153249099958305568443874700, −3.32011807519595132741865495142, −2.47495016111105270558228759483, −1.20403815503451087888988435018,
1.40486403518532242249004867753, 3.28439258559214431625703184604, 3.80971667961244198549523359263, 4.65190651024797205426139835890, 5.82341410171504914367181872037, 6.38460940670539142674041580352, 7.67004482517405927059557654228, 8.402172298659248132592523459432, 9.102455760899311584670151755378, 10.11200839042751556043772798304