L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.866 + 0.5i)5-s + (−0.866 − 0.5i)7-s + (−0.499 − 0.866i)9-s + (−1.5 − 0.866i)11-s + 0.999i·15-s + (−0.866 + 0.499i)21-s − 0.999·27-s − 1.73·29-s + (0.866 − 1.5i)31-s + (−1.5 + 0.866i)33-s + 0.999·35-s + (0.866 + 0.499i)45-s + (0.499 + 0.866i)49-s + (0.866 − 1.5i)53-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.866 + 0.5i)5-s + (−0.866 − 0.5i)7-s + (−0.499 − 0.866i)9-s + (−1.5 − 0.866i)11-s + 0.999i·15-s + (−0.866 + 0.499i)21-s − 0.999·27-s − 1.73·29-s + (0.866 − 1.5i)31-s + (−1.5 + 0.866i)33-s + 0.999·35-s + (0.866 + 0.499i)45-s + (0.499 + 0.866i)49-s + (0.866 − 1.5i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.925 + 0.378i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.925 + 0.378i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5158393017\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5158393017\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
good | 5 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + 1.73T + T^{2} \) |
| 31 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T + T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + 1.73iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.417094974176847499983829380371, −8.366209257881868980350677900255, −7.74231102829829740786454244172, −7.23736832863158853143003445640, −6.31377679835593194596590557652, −5.47896598582697144793438417959, −3.89312199972765814276043041693, −3.26051838614669978343674285327, −2.35379096703489875231038907299, −0.37657584773981582957058983616,
2.33257629487174856787672796317, 3.21901305721781383322176111221, 4.18771551070668449845377448889, 4.99888388467824141213865775686, 5.76029336523597300922322639434, 7.16772972479712609318525820594, 7.86406001574949865046259458014, 8.634365304197086713631549719127, 9.312558076973444673722185297035, 10.14801138929974697275414327446