Properties

Label 2-1344-1.1-c3-0-21
Degree $2$
Conductor $1344$
Sign $1$
Analytic cond. $79.2985$
Root an. cond. $8.90497$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 4.54·5-s − 7·7-s + 9·9-s − 40.7·11-s − 53.2·13-s + 13.6·15-s + 4.54·17-s + 122.·19-s − 21·21-s − 131.·23-s − 104.·25-s + 27·27-s + 216.·29-s + 251.·31-s − 122.·33-s − 31.8·35-s − 11.8·37-s − 159.·39-s − 111.·41-s + 369.·43-s + 40.9·45-s + 262.·47-s + 49·49-s + 13.6·51-s + 567.·53-s − 185.·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.406·5-s − 0.377·7-s + 0.333·9-s − 1.11·11-s − 1.13·13-s + 0.234·15-s + 0.0649·17-s + 1.48·19-s − 0.218·21-s − 1.19·23-s − 0.834·25-s + 0.192·27-s + 1.38·29-s + 1.45·31-s − 0.644·33-s − 0.153·35-s − 0.0528·37-s − 0.656·39-s − 0.425·41-s + 1.30·43-s + 0.135·45-s + 0.815·47-s + 0.142·49-s + 0.0374·51-s + 1.46·53-s − 0.454·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(79.2985\)
Root analytic conductor: \(8.90497\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1344,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.384915915\)
\(L(\frac12)\) \(\approx\) \(2.384915915\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
7 \( 1 + 7T \)
good5 \( 1 - 4.54T + 125T^{2} \)
11 \( 1 + 40.7T + 1.33e3T^{2} \)
13 \( 1 + 53.2T + 2.19e3T^{2} \)
17 \( 1 - 4.54T + 4.91e3T^{2} \)
19 \( 1 - 122.T + 6.85e3T^{2} \)
23 \( 1 + 131.T + 1.21e4T^{2} \)
29 \( 1 - 216.T + 2.43e4T^{2} \)
31 \( 1 - 251.T + 2.97e4T^{2} \)
37 \( 1 + 11.8T + 5.06e4T^{2} \)
41 \( 1 + 111.T + 6.89e4T^{2} \)
43 \( 1 - 369.T + 7.95e4T^{2} \)
47 \( 1 - 262.T + 1.03e5T^{2} \)
53 \( 1 - 567.T + 1.48e5T^{2} \)
59 \( 1 - 839.T + 2.05e5T^{2} \)
61 \( 1 - 485.T + 2.26e5T^{2} \)
67 \( 1 + 333.T + 3.00e5T^{2} \)
71 \( 1 + 590.T + 3.57e5T^{2} \)
73 \( 1 - 490.T + 3.89e5T^{2} \)
79 \( 1 + 121.T + 4.93e5T^{2} \)
83 \( 1 - 609.T + 5.71e5T^{2} \)
89 \( 1 - 719.T + 7.04e5T^{2} \)
97 \( 1 + 637.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.400492301415239746290306324714, −8.327276651260711185119573687609, −7.69918104545993394763569895851, −6.94642260521056048716137724396, −5.82981123944744025530687786941, −5.09162289729310630041079672206, −4.03738302754361848740736742301, −2.82214717362446157306408820133, −2.29488723284989378883591027340, −0.73234532025868511622353979724, 0.73234532025868511622353979724, 2.29488723284989378883591027340, 2.82214717362446157306408820133, 4.03738302754361848740736742301, 5.09162289729310630041079672206, 5.82981123944744025530687786941, 6.94642260521056048716137724396, 7.69918104545993394763569895851, 8.327276651260711185119573687609, 9.400492301415239746290306324714

Graph of the $Z$-function along the critical line