Properties

Label 2-1344-1.1-c3-0-20
Degree $2$
Conductor $1344$
Sign $1$
Analytic cond. $79.2985$
Root an. cond. $8.90497$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 10.5·5-s − 7·7-s + 9·9-s + 34.7·11-s + 37.2·13-s − 31.6·15-s − 10.5·17-s − 58.5·19-s − 21·21-s + 125.·23-s − 13.7·25-s + 27·27-s + 35.4·29-s − 291.·31-s + 104.·33-s + 73.8·35-s + 259.·37-s + 111.·39-s − 338.·41-s + 6.80·43-s − 94.9·45-s − 250.·47-s + 49·49-s − 31.6·51-s + 536.·53-s − 366.·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.943·5-s − 0.377·7-s + 0.333·9-s + 0.952·11-s + 0.795·13-s − 0.544·15-s − 0.150·17-s − 0.707·19-s − 0.218·21-s + 1.13·23-s − 0.109·25-s + 0.192·27-s + 0.226·29-s − 1.69·31-s + 0.549·33-s + 0.356·35-s + 1.15·37-s + 0.459·39-s − 1.28·41-s + 0.0241·43-s − 0.314·45-s − 0.778·47-s + 0.142·49-s − 0.0868·51-s + 1.39·53-s − 0.898·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(79.2985\)
Root analytic conductor: \(8.90497\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1344,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.131360086\)
\(L(\frac12)\) \(\approx\) \(2.131360086\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
7 \( 1 + 7T \)
good5 \( 1 + 10.5T + 125T^{2} \)
11 \( 1 - 34.7T + 1.33e3T^{2} \)
13 \( 1 - 37.2T + 2.19e3T^{2} \)
17 \( 1 + 10.5T + 4.91e3T^{2} \)
19 \( 1 + 58.5T + 6.85e3T^{2} \)
23 \( 1 - 125.T + 1.21e4T^{2} \)
29 \( 1 - 35.4T + 2.43e4T^{2} \)
31 \( 1 + 291.T + 2.97e4T^{2} \)
37 \( 1 - 259.T + 5.06e4T^{2} \)
41 \( 1 + 338.T + 6.89e4T^{2} \)
43 \( 1 - 6.80T + 7.95e4T^{2} \)
47 \( 1 + 250.T + 1.03e5T^{2} \)
53 \( 1 - 536.T + 1.48e5T^{2} \)
59 \( 1 + 35.8T + 2.05e5T^{2} \)
61 \( 1 + 57.7T + 2.26e5T^{2} \)
67 \( 1 - 481.T + 3.00e5T^{2} \)
71 \( 1 + 363.T + 3.57e5T^{2} \)
73 \( 1 - 581.T + 3.89e5T^{2} \)
79 \( 1 - 693.T + 4.93e5T^{2} \)
83 \( 1 - 1.33e3T + 5.71e5T^{2} \)
89 \( 1 + 353.T + 7.04e5T^{2} \)
97 \( 1 - 1.44e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.006743623146583624947976169006, −8.585709901700530857523540634968, −7.64373570667051806031404691358, −6.88863218169885432462384766345, −6.11866534038416535760956524620, −4.80942102053493307172613486536, −3.81037685308484063842822231186, −3.39639940542760708770362563503, −1.99491353710157120667241029432, −0.71519488616983047452452648080, 0.71519488616983047452452648080, 1.99491353710157120667241029432, 3.39639940542760708770362563503, 3.81037685308484063842822231186, 4.80942102053493307172613486536, 6.11866534038416535760956524620, 6.88863218169885432462384766345, 7.64373570667051806031404691358, 8.585709901700530857523540634968, 9.006743623146583624947976169006

Graph of the $Z$-function along the critical line