Properties

Label 2-1344-1.1-c3-0-10
Degree $2$
Conductor $1344$
Sign $1$
Analytic cond. $79.2985$
Root an. cond. $8.90497$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 10.6·5-s + 7·7-s + 9·9-s − 68.4·11-s − 23.0·13-s − 31.8·15-s − 62.2·17-s − 53.2·19-s + 21·21-s + 89.8·23-s − 11.9·25-s + 27·27-s + 43.2·29-s + 102.·31-s − 205.·33-s − 74.4·35-s + 302.·37-s − 69.1·39-s + 73.4·41-s + 377.·43-s − 95.6·45-s + 487.·47-s + 49·49-s − 186.·51-s − 467.·53-s + 727.·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.951·5-s + 0.377·7-s + 0.333·9-s − 1.87·11-s − 0.492·13-s − 0.549·15-s − 0.887·17-s − 0.643·19-s + 0.218·21-s + 0.815·23-s − 0.0954·25-s + 0.192·27-s + 0.277·29-s + 0.595·31-s − 1.08·33-s − 0.359·35-s + 1.34·37-s − 0.284·39-s + 0.279·41-s + 1.33·43-s − 0.317·45-s + 1.51·47-s + 0.142·49-s − 0.512·51-s − 1.21·53-s + 1.78·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(79.2985\)
Root analytic conductor: \(8.90497\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1344,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.463859274\)
\(L(\frac12)\) \(\approx\) \(1.463859274\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
7 \( 1 - 7T \)
good5 \( 1 + 10.6T + 125T^{2} \)
11 \( 1 + 68.4T + 1.33e3T^{2} \)
13 \( 1 + 23.0T + 2.19e3T^{2} \)
17 \( 1 + 62.2T + 4.91e3T^{2} \)
19 \( 1 + 53.2T + 6.85e3T^{2} \)
23 \( 1 - 89.8T + 1.21e4T^{2} \)
29 \( 1 - 43.2T + 2.43e4T^{2} \)
31 \( 1 - 102.T + 2.97e4T^{2} \)
37 \( 1 - 302.T + 5.06e4T^{2} \)
41 \( 1 - 73.4T + 6.89e4T^{2} \)
43 \( 1 - 377.T + 7.95e4T^{2} \)
47 \( 1 - 487.T + 1.03e5T^{2} \)
53 \( 1 + 467.T + 1.48e5T^{2} \)
59 \( 1 - 432.T + 2.05e5T^{2} \)
61 \( 1 - 70.4T + 2.26e5T^{2} \)
67 \( 1 + 475.T + 3.00e5T^{2} \)
71 \( 1 + 680.T + 3.57e5T^{2} \)
73 \( 1 - 604.T + 3.89e5T^{2} \)
79 \( 1 - 329.T + 4.93e5T^{2} \)
83 \( 1 + 834.T + 5.71e5T^{2} \)
89 \( 1 + 947.T + 7.04e5T^{2} \)
97 \( 1 - 661.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.066787988437718243284736060828, −8.285910133549708837761812942917, −7.71838590238666272119968768426, −7.14735309141460540240903010368, −5.87101019578253330557051672354, −4.75788579570462247633275537404, −4.22485262779167849496239875605, −2.90661288114489359232921896562, −2.28090561271363812353384884348, −0.56084243431055737046410897901, 0.56084243431055737046410897901, 2.28090561271363812353384884348, 2.90661288114489359232921896562, 4.22485262779167849496239875605, 4.75788579570462247633275537404, 5.87101019578253330557051672354, 7.14735309141460540240903010368, 7.71838590238666272119968768426, 8.285910133549708837761812942917, 9.066787988437718243284736060828

Graph of the $Z$-function along the critical line