L(s) = 1 | + 2-s + (−0.5 − 0.866i)3-s + 4-s + (−0.355 + 0.616i)5-s + (−0.5 − 0.866i)6-s − 0.0500·7-s + 8-s + (−0.499 + 0.866i)9-s + (−0.355 + 0.616i)10-s + (−0.119 + 0.206i)11-s + (−0.5 − 0.866i)12-s + 6.08·13-s − 0.0500·14-s + 0.711·15-s + 16-s − 2.89·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (−0.288 − 0.499i)3-s + 0.5·4-s + (−0.159 + 0.275i)5-s + (−0.204 − 0.353i)6-s − 0.0189·7-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.112 + 0.194i)10-s + (−0.0358 + 0.0621i)11-s + (−0.144 − 0.249i)12-s + 1.68·13-s − 0.0133·14-s + 0.183·15-s + 0.250·16-s − 0.701·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 + 0.151i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.988 + 0.151i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.459922287\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.459922287\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 223 | \( 1 + (-3.73 - 14.4i)T \) |
good | 5 | \( 1 + (0.355 - 0.616i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 0.0500T + 7T^{2} \) |
| 11 | \( 1 + (0.119 - 0.206i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 6.08T + 13T^{2} \) |
| 17 | \( 1 + 2.89T + 17T^{2} \) |
| 19 | \( 1 + (-2.64 - 4.57i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.63 + 2.83i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.04 + 7.00i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.00 - 1.74i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.18 + 3.78i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 10.3T + 41T^{2} \) |
| 43 | \( 1 + (-0.543 - 0.940i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.00 - 1.73i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.23 + 3.86i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 9.30T + 59T^{2} \) |
| 61 | \( 1 + (-0.798 - 1.38i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.18 - 3.77i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.74 - 3.02i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (0.369 - 0.639i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.02 + 6.97i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (4.53 - 7.85i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (4.61 + 7.99i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.07 + 1.85i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.714249169910743156673584731020, −8.547259043129217399752629965281, −7.904722156217585312740107062284, −6.93058510293501872433558540335, −6.19755703309963171236170334845, −5.62845265903519806545101498208, −4.39021611680152235681854596558, −3.59351267643750932182123057278, −2.45592472087425252680197533370, −1.17012184107002281221196887989,
1.09048437403689668711629310431, 2.73391958145375538535597132403, 3.72909578923036056265585190402, 4.51736894854699834740590490070, 5.33358483602197536959401447435, 6.23738695836935552903795093680, 6.88601004786326239795464253692, 8.112073147839540289640843075898, 8.821351294608974789214709014152, 9.647091411432925175656547237476