Properties

Label 2-1338-1.1-c1-0-13
Degree $2$
Conductor $1338$
Sign $1$
Analytic cond. $10.6839$
Root an. cond. $3.26863$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 0.686·5-s − 6-s + 2.87·7-s − 8-s + 9-s − 0.686·10-s + 5.51·11-s + 12-s + 0.329·13-s − 2.87·14-s + 0.686·15-s + 16-s + 4.44·17-s − 18-s − 1.53·19-s + 0.686·20-s + 2.87·21-s − 5.51·22-s − 3.17·23-s − 24-s − 4.52·25-s − 0.329·26-s + 27-s + 2.87·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.306·5-s − 0.408·6-s + 1.08·7-s − 0.353·8-s + 0.333·9-s − 0.217·10-s + 1.66·11-s + 0.288·12-s + 0.0914·13-s − 0.768·14-s + 0.177·15-s + 0.250·16-s + 1.07·17-s − 0.235·18-s − 0.352·19-s + 0.153·20-s + 0.627·21-s − 1.17·22-s − 0.661·23-s − 0.204·24-s − 0.905·25-s − 0.0646·26-s + 0.192·27-s + 0.543·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1338\)    =    \(2 \cdot 3 \cdot 223\)
Sign: $1$
Analytic conductor: \(10.6839\)
Root analytic conductor: \(3.26863\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1338,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.991333424\)
\(L(\frac12)\) \(\approx\) \(1.991333424\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
223 \( 1 + T \)
good5 \( 1 - 0.686T + 5T^{2} \)
7 \( 1 - 2.87T + 7T^{2} \)
11 \( 1 - 5.51T + 11T^{2} \)
13 \( 1 - 0.329T + 13T^{2} \)
17 \( 1 - 4.44T + 17T^{2} \)
19 \( 1 + 1.53T + 19T^{2} \)
23 \( 1 + 3.17T + 23T^{2} \)
29 \( 1 - 7.03T + 29T^{2} \)
31 \( 1 + 7.43T + 31T^{2} \)
37 \( 1 + 7.58T + 37T^{2} \)
41 \( 1 + 2.51T + 41T^{2} \)
43 \( 1 - 6.97T + 43T^{2} \)
47 \( 1 - 6.00T + 47T^{2} \)
53 \( 1 + 0.840T + 53T^{2} \)
59 \( 1 + 3.14T + 59T^{2} \)
61 \( 1 + 2.68T + 61T^{2} \)
67 \( 1 + 13.9T + 67T^{2} \)
71 \( 1 + 6.67T + 71T^{2} \)
73 \( 1 - 11.9T + 73T^{2} \)
79 \( 1 - 12.1T + 79T^{2} \)
83 \( 1 + 5.22T + 83T^{2} \)
89 \( 1 - 8.29T + 89T^{2} \)
97 \( 1 - 4.45T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.419112382552145271797561204432, −8.871491837523768758035389703892, −8.096975643766720450402313100290, −7.42402003461030987107746378299, −6.47939684130714623645796745259, −5.58394223470196245039365133389, −4.34111949263638118387840789247, −3.45149027049067907494587218443, −2.01452456951285869762546390411, −1.29373614850023603182575226277, 1.29373614850023603182575226277, 2.01452456951285869762546390411, 3.45149027049067907494587218443, 4.34111949263638118387840789247, 5.58394223470196245039365133389, 6.47939684130714623645796745259, 7.42402003461030987107746378299, 8.096975643766720450402313100290, 8.871491837523768758035389703892, 9.419112382552145271797561204432

Graph of the $Z$-function along the critical line