L(s) = 1 | + (2.11 − 1.21i)2-s + 0.519·3-s + (1.96 − 3.40i)4-s + (−2.56 + 1.47i)5-s + (1.09 − 0.632i)6-s + (0.877 + 2.49i)7-s − 4.71i·8-s − 2.73·9-s + (−3.60 + 6.24i)10-s + (−2.13 − 3.69i)11-s + (1.02 − 1.77i)12-s + (0.490 + 0.848i)13-s + (4.89 + 4.19i)14-s + (−1.33 + 0.768i)15-s + (−1.81 − 3.13i)16-s − 4.99i·17-s + ⋯ |
L(s) = 1 | + (1.49 − 0.861i)2-s + 0.299·3-s + (0.984 − 1.70i)4-s + (−1.14 + 0.661i)5-s + (0.447 − 0.258i)6-s + (0.331 + 0.943i)7-s − 1.66i·8-s − 0.910·9-s + (−1.13 + 1.97i)10-s + (−0.642 − 1.11i)11-s + (0.295 − 0.511i)12-s + (0.135 + 0.235i)13-s + (1.30 + 1.12i)14-s + (−0.343 + 0.198i)15-s + (−0.452 − 0.784i)16-s − 1.21i·17-s + ⋯ |
Λ(s)=(=(133s/2ΓC(s)L(s)(0.621+0.783i)Λ(2−s)
Λ(s)=(=(133s/2ΓC(s+1/2)L(s)(0.621+0.783i)Λ(1−s)
Degree: |
2 |
Conductor: |
133
= 7⋅19
|
Sign: |
0.621+0.783i
|
Analytic conductor: |
1.06201 |
Root analytic conductor: |
1.03053 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ133(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 133, ( :1/2), 0.621+0.783i)
|
Particular Values
L(1) |
≈ |
1.83748−0.888392i |
L(21) |
≈ |
1.83748−0.888392i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−0.877−2.49i)T |
| 19 | 1+(−1.53−4.07i)T |
good | 2 | 1+(−2.11+1.21i)T+(1−1.73i)T2 |
| 3 | 1−0.519T+3T2 |
| 5 | 1+(2.56−1.47i)T+(2.5−4.33i)T2 |
| 11 | 1+(2.13+3.69i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−0.490−0.848i)T+(−6.5+11.2i)T2 |
| 17 | 1+4.99iT−17T2 |
| 23 | 1−7.91T+23T2 |
| 29 | 1+(−1.16+0.674i)T+(14.5−25.1i)T2 |
| 31 | 1+(2.73+4.74i)T+(−15.5+26.8i)T2 |
| 37 | 1+(1.05+0.611i)T+(18.5+32.0i)T2 |
| 41 | 1+(1.34−2.32i)T+(−20.5−35.5i)T2 |
| 43 | 1+(2.72−4.71i)T+(−21.5−37.2i)T2 |
| 47 | 1+4.39iT−47T2 |
| 53 | 1+(−6.59−3.80i)T+(26.5+45.8i)T2 |
| 59 | 1+9.34T+59T2 |
| 61 | 1−3.37iT−61T2 |
| 67 | 1+(1.50+0.869i)T+(33.5+58.0i)T2 |
| 71 | 1+(12.4+7.17i)T+(35.5+61.4i)T2 |
| 73 | 1+4.63iT−73T2 |
| 79 | 1+(4.21−2.43i)T+(39.5−68.4i)T2 |
| 83 | 1−2.39iT−83T2 |
| 89 | 1−14.4T+89T2 |
| 97 | 1+(−7.58+13.1i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.16279738709227281188563298161, −11.77532108680217558746941161353, −11.57123719974851647880254276002, −10.72376649981835694893469364297, −8.920453012703103530070283315669, −7.70680118560682091892734244170, −6.01353764380281197249247243635, −5.01702300190554006196795664577, −3.39181981719551954086264329414, −2.75980639365218901105545116466,
3.29086864142919688578784963342, 4.44021427449458626676963438529, 5.23796882008971385966191194060, 6.96505531628453294274001017474, 7.71899527203791971353909172222, 8.674175227410196203293061683483, 10.71431735255911778651490372987, 11.80219744449588043803193458302, 12.76018169870003352725898599517, 13.39090690322505918111048333238