L(s) = 1 | + (−1.16 + 2.01i)2-s − 1.27·3-s + (−1.69 − 2.93i)4-s + (2.05 − 3.55i)5-s + (1.48 − 2.56i)6-s + (−0.208 − 2.63i)7-s + 3.23·8-s − 1.36·9-s + (4.76 + 8.25i)10-s + (−1.36 + 2.36i)11-s + (2.16 + 3.75i)12-s + (2.05 − 3.55i)13-s + (5.54 + 2.64i)14-s + (−2.61 + 4.53i)15-s + (−0.360 + 0.624i)16-s + 1.24·17-s + ⋯ |
L(s) = 1 | + (−0.820 + 1.42i)2-s − 0.737·3-s + (−0.847 − 1.46i)4-s + (0.917 − 1.58i)5-s + (0.605 − 1.04i)6-s + (−0.0789 − 0.996i)7-s + 1.14·8-s − 0.456·9-s + (1.50 + 2.60i)10-s + (−0.412 + 0.713i)11-s + (0.625 + 1.08i)12-s + (0.569 − 0.986i)13-s + (1.48 + 0.706i)14-s + (−0.676 + 1.17i)15-s + (−0.0901 + 0.156i)16-s + 0.302·17-s + ⋯ |
Λ(s)=(=(133s/2ΓC(s)L(s)(0.962+0.271i)Λ(2−s)
Λ(s)=(=(133s/2ΓC(s+1/2)L(s)(0.962+0.271i)Λ(1−s)
Degree: |
2 |
Conductor: |
133
= 7⋅19
|
Sign: |
0.962+0.271i
|
Analytic conductor: |
1.06201 |
Root analytic conductor: |
1.03053 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ133(102,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 133, ( :1/2), 0.962+0.271i)
|
Particular Values
L(1) |
≈ |
0.529041−0.0732882i |
L(21) |
≈ |
0.529041−0.0732882i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(0.208+2.63i)T |
| 19 | 1+(4.34+0.339i)T |
good | 2 | 1+(1.16−2.01i)T+(−1−1.73i)T2 |
| 3 | 1+1.27T+3T2 |
| 5 | 1+(−2.05+3.55i)T+(−2.5−4.33i)T2 |
| 11 | 1+(1.36−2.36i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−2.05+3.55i)T+(−6.5−11.2i)T2 |
| 17 | 1−1.24T+17T2 |
| 23 | 1−5.63T+23T2 |
| 29 | 1+(−0.386+0.669i)T+(−14.5−25.1i)T2 |
| 31 | 1+(1.21−2.11i)T+(−15.5−26.8i)T2 |
| 37 | 1+(1.32+2.28i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−2.41−4.17i)T+(−20.5+35.5i)T2 |
| 43 | 1+(0.250+0.434i)T+(−21.5+37.2i)T2 |
| 47 | 1−0.00235T+47T2 |
| 53 | 1+(−0.280−0.485i)T+(−26.5+45.8i)T2 |
| 59 | 1+2.61T+59T2 |
| 61 | 1−11.7T+61T2 |
| 67 | 1+(4.70+8.14i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−5.28−9.14i)T+(−35.5+61.4i)T2 |
| 73 | 1−11.2T+73T2 |
| 79 | 1+(0.675−1.16i)T+(−39.5−68.4i)T2 |
| 83 | 1−6.83T+83T2 |
| 89 | 1+7.59T+89T2 |
| 97 | 1+(−1.72−2.99i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.24294988989198606206992908160, −12.53843400095987329680641795842, −10.75121288514408208183277255650, −9.836199898554764562327304919136, −8.804204364972950380621275941300, −7.970444161792871124326352868422, −6.60641119191435892258125879673, −5.58213036173515321544890304138, −4.85113713332117113547854454375, −0.802541341592220561337579294404,
2.21308869103481245661817628151, 3.21255923565107538142613056924, 5.70952394450989302493954391839, 6.59288062740105341781257303069, 8.537091325016231210903393437425, 9.442588985094819343456381296663, 10.59875838895512652372023038635, 11.06882070731908241986177455782, 11.75308655083556624102569435698, 12.97103781302439113454228674620