L(s) = 1 | + (−1.14 + 1.97i)2-s + 2.46·3-s + (−1.60 − 2.77i)4-s + (0.527 − 0.913i)5-s + (−2.81 + 4.86i)6-s + (1.23 + 2.33i)7-s + 2.74·8-s + 3.07·9-s + (1.20 + 2.08i)10-s + (0.0883 − 0.152i)11-s + (−3.94 − 6.83i)12-s + (−0.270 + 0.468i)13-s + (−6.03 − 0.226i)14-s + (1.29 − 2.25i)15-s + (0.0736 − 0.127i)16-s − 7.92·17-s + ⋯ |
L(s) = 1 | + (−0.806 + 1.39i)2-s + 1.42·3-s + (−0.800 − 1.38i)4-s + (0.235 − 0.408i)5-s + (−1.14 + 1.98i)6-s + (0.467 + 0.884i)7-s + 0.970·8-s + 1.02·9-s + (0.380 + 0.658i)10-s + (0.0266 − 0.0461i)11-s + (−1.13 − 1.97i)12-s + (−0.0750 + 0.130i)13-s + (−1.61 − 0.0606i)14-s + (0.335 − 0.581i)15-s + (0.0184 − 0.0319i)16-s − 1.92·17-s + ⋯ |
Λ(s)=(=(133s/2ΓC(s)L(s)(−0.0416−0.999i)Λ(2−s)
Λ(s)=(=(133s/2ΓC(s+1/2)L(s)(−0.0416−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
133
= 7⋅19
|
Sign: |
−0.0416−0.999i
|
Analytic conductor: |
1.06201 |
Root analytic conductor: |
1.03053 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ133(102,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 133, ( :1/2), −0.0416−0.999i)
|
Particular Values
L(1) |
≈ |
0.761646+0.794051i |
L(21) |
≈ |
0.761646+0.794051i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−1.23−2.33i)T |
| 19 | 1+(−0.729+4.29i)T |
good | 2 | 1+(1.14−1.97i)T+(−1−1.73i)T2 |
| 3 | 1−2.46T+3T2 |
| 5 | 1+(−0.527+0.913i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−0.0883+0.152i)T+(−5.5−9.52i)T2 |
| 13 | 1+(0.270−0.468i)T+(−6.5−11.2i)T2 |
| 17 | 1+7.92T+17T2 |
| 23 | 1+1.47T+23T2 |
| 29 | 1+(−2.19+3.80i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−3.58+6.21i)T+(−15.5−26.8i)T2 |
| 37 | 1+(4.49+7.79i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−1.27−2.21i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−5.11−8.85i)T+(−21.5+37.2i)T2 |
| 47 | 1+4.48T+47T2 |
| 53 | 1+(−0.716−1.24i)T+(−26.5+45.8i)T2 |
| 59 | 1+0.933T+59T2 |
| 61 | 1−10.5T+61T2 |
| 67 | 1+(1.65+2.86i)T+(−33.5+58.0i)T2 |
| 71 | 1+(5.22+9.05i)T+(−35.5+61.4i)T2 |
| 73 | 1+8.45T+73T2 |
| 79 | 1+(4.94−8.57i)T+(−39.5−68.4i)T2 |
| 83 | 1−0.0234T+83T2 |
| 89 | 1−3.93T+89T2 |
| 97 | 1+(−6.55−11.3i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.87797197314572256003515531674, −13.01018589200595821210767957567, −11.35343731858558977806061239767, −9.553833385124880003220297017029, −8.978866326683544737912338572353, −8.408480319777834748125570240318, −7.40237489887255213941655152945, −6.13950207545511351998702446384, −4.68782392012014183685411774876, −2.41176477324404986242070148205,
1.83559285462658029284416800332, 3.02693164854195143225574107862, 4.21842534287425453010921451939, 6.94159249693544758731272238639, 8.289671375156954825649406749629, 8.821228926028793930631266085109, 10.09447114985579232749928173943, 10.58637155046149980851794116778, 11.77968015148203796724399842289, 13.02102636575277518094462837593