L(s) = 1 | + (−1.14 + 1.97i)2-s + 2.46·3-s + (−1.60 − 2.77i)4-s + (0.527 − 0.913i)5-s + (−2.81 + 4.86i)6-s + (1.23 + 2.33i)7-s + 2.74·8-s + 3.07·9-s + (1.20 + 2.08i)10-s + (0.0883 − 0.152i)11-s + (−3.94 − 6.83i)12-s + (−0.270 + 0.468i)13-s + (−6.03 − 0.226i)14-s + (1.29 − 2.25i)15-s + (0.0736 − 0.127i)16-s − 7.92·17-s + ⋯ |
L(s) = 1 | + (−0.806 + 1.39i)2-s + 1.42·3-s + (−0.800 − 1.38i)4-s + (0.235 − 0.408i)5-s + (−1.14 + 1.98i)6-s + (0.467 + 0.884i)7-s + 0.970·8-s + 1.02·9-s + (0.380 + 0.658i)10-s + (0.0266 − 0.0461i)11-s + (−1.13 − 1.97i)12-s + (−0.0750 + 0.130i)13-s + (−1.61 − 0.0606i)14-s + (0.335 − 0.581i)15-s + (0.0184 − 0.0319i)16-s − 1.92·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 133 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0416 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 133 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0416 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.761646 + 0.794051i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.761646 + 0.794051i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-1.23 - 2.33i)T \) |
| 19 | \( 1 + (-0.729 + 4.29i)T \) |
good | 2 | \( 1 + (1.14 - 1.97i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 - 2.46T + 3T^{2} \) |
| 5 | \( 1 + (-0.527 + 0.913i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.0883 + 0.152i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.270 - 0.468i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 7.92T + 17T^{2} \) |
| 23 | \( 1 + 1.47T + 23T^{2} \) |
| 29 | \( 1 + (-2.19 + 3.80i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.58 + 6.21i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.49 + 7.79i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.27 - 2.21i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.11 - 8.85i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 4.48T + 47T^{2} \) |
| 53 | \( 1 + (-0.716 - 1.24i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 0.933T + 59T^{2} \) |
| 61 | \( 1 - 10.5T + 61T^{2} \) |
| 67 | \( 1 + (1.65 + 2.86i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (5.22 + 9.05i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 8.45T + 73T^{2} \) |
| 79 | \( 1 + (4.94 - 8.57i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 0.0234T + 83T^{2} \) |
| 89 | \( 1 - 3.93T + 89T^{2} \) |
| 97 | \( 1 + (-6.55 - 11.3i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.87797197314572256003515531674, −13.01018589200595821210767957567, −11.35343731858558977806061239767, −9.553833385124880003220297017029, −8.978866326683544737912338572353, −8.408480319777834748125570240318, −7.40237489887255213941655152945, −6.13950207545511351998702446384, −4.68782392012014183685411774876, −2.41176477324404986242070148205,
1.83559285462658029284416800332, 3.02693164854195143225574107862, 4.21842534287425453010921451939, 6.94159249693544758731272238639, 8.289671375156954825649406749629, 8.821228926028793930631266085109, 10.09447114985579232749928173943, 10.58637155046149980851794116778, 11.77968015148203796724399842289, 13.02102636575277518094462837593