L(s) = 1 | + (−0.358 + 2.03i)2-s + (1.19 − 0.435i)3-s + (−2.13 − 0.776i)4-s + (2.57 − 0.935i)5-s + (0.457 + 2.59i)6-s + (2.17 − 1.50i)7-s + (0.278 − 0.481i)8-s + (−1.05 + 0.885i)9-s + (0.981 + 5.56i)10-s − 5.30·11-s − 2.89·12-s + (−0.214 − 1.21i)13-s + (2.29 + 4.96i)14-s + (2.67 − 2.24i)15-s + (−2.59 − 2.17i)16-s + (−4.42 − 3.71i)17-s + ⋯ |
L(s) = 1 | + (−0.253 + 1.43i)2-s + (0.691 − 0.251i)3-s + (−1.06 − 0.388i)4-s + (1.14 − 0.418i)5-s + (0.186 + 1.05i)6-s + (0.821 − 0.570i)7-s + (0.0983 − 0.170i)8-s + (−0.351 + 0.295i)9-s + (0.310 + 1.76i)10-s − 1.60·11-s − 0.834·12-s + (−0.0595 − 0.337i)13-s + (0.612 + 1.32i)14-s + (0.689 − 0.578i)15-s + (−0.649 − 0.544i)16-s + (−1.07 − 0.901i)17-s + ⋯ |
Λ(s)=(=(133s/2ΓC(s)L(s)(0.211−0.977i)Λ(2−s)
Λ(s)=(=(133s/2ΓC(s+1/2)L(s)(0.211−0.977i)Λ(1−s)
Degree: |
2 |
Conductor: |
133
= 7⋅19
|
Sign: |
0.211−0.977i
|
Analytic conductor: |
1.06201 |
Root analytic conductor: |
1.03053 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ133(100,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 133, ( :1/2), 0.211−0.977i)
|
Particular Values
L(1) |
≈ |
0.988398+0.797781i |
L(21) |
≈ |
0.988398+0.797781i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−2.17+1.50i)T |
| 19 | 1+(−1.98−3.87i)T |
good | 2 | 1+(0.358−2.03i)T+(−1.87−0.684i)T2 |
| 3 | 1+(−1.19+0.435i)T+(2.29−1.92i)T2 |
| 5 | 1+(−2.57+0.935i)T+(3.83−3.21i)T2 |
| 11 | 1+5.30T+11T2 |
| 13 | 1+(0.214+1.21i)T+(−12.2+4.44i)T2 |
| 17 | 1+(4.42+3.71i)T+(2.95+16.7i)T2 |
| 23 | 1+(−0.994−5.64i)T+(−21.6+7.86i)T2 |
| 29 | 1+(−1.96−0.714i)T+(22.2+18.6i)T2 |
| 31 | 1+(−2.21+3.83i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−3.92+6.80i)T+(−18.5−32.0i)T2 |
| 41 | 1+(0.533−3.02i)T+(−38.5−14.0i)T2 |
| 43 | 1+(4.27+3.58i)T+(7.46+42.3i)T2 |
| 47 | 1+(−0.527+0.442i)T+(8.16−46.2i)T2 |
| 53 | 1+(−6.70−2.43i)T+(40.6+34.0i)T2 |
| 59 | 1+(0.436+0.366i)T+(10.2+58.1i)T2 |
| 61 | 1+(0.920+5.22i)T+(−57.3+20.8i)T2 |
| 67 | 1+(−1.98−11.2i)T+(−62.9+22.9i)T2 |
| 71 | 1+(−1.10−0.923i)T+(12.3+69.9i)T2 |
| 73 | 1+(5.59−2.03i)T+(55.9−46.9i)T2 |
| 79 | 1+(1.30+1.09i)T+(13.7+77.7i)T2 |
| 83 | 1+(−2.46−4.26i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−3.60−1.31i)T+(68.1+57.2i)T2 |
| 97 | 1+(−15.3+5.57i)T+(74.3−62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.59979228592944637183688331285, −13.29568925353566692997229146759, −11.31307282008273825874468359204, −10.00068774701502946706806534267, −8.897195466495376485244764399860, −7.959295570372617412651631796629, −7.35114175848249063384931607639, −5.68395930430540903131188843447, −5.05384418578623338226522362580, −2.36624254844298824137894510941,
2.20434127801101362294961752223, 2.82732694132616517160864287381, 4.75966887373194352546907322391, 6.33046931188817725147556116272, 8.341898501992835609112638793099, 9.073167675843154135735394464607, 10.15255576755542064902108473859, 10.80418878216845790599696266339, 11.83656364266971606076353926111, 13.06904215944073282220427518433