Properties

Label 2-133-133.10-c1-0-6
Degree $2$
Conductor $133$
Sign $-0.130 + 0.991i$
Analytic cond. $1.06201$
Root an. cond. $1.03053$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.790 − 0.942i)2-s + (0.0284 + 0.161i)3-s + (0.0846 − 0.480i)4-s + (0.850 − 0.150i)5-s + (0.129 − 0.154i)6-s + (−0.990 − 2.45i)7-s + (−2.64 + 1.52i)8-s + (2.79 − 1.01i)9-s + (−0.813 − 0.682i)10-s + 1.91·11-s + 0.0798·12-s + (−3.99 − 3.35i)13-s + (−1.52 + 2.87i)14-s + (0.0484 + 0.132i)15-s + (2.61 + 0.953i)16-s + (1.13 − 3.12i)17-s + ⋯
L(s)  = 1  + (−0.558 − 0.666i)2-s + (0.0164 + 0.0931i)3-s + (0.0423 − 0.240i)4-s + (0.380 − 0.0670i)5-s + (0.0528 − 0.0630i)6-s + (−0.374 − 0.927i)7-s + (−0.936 + 0.540i)8-s + (0.931 − 0.338i)9-s + (−0.257 − 0.215i)10-s + 0.577·11-s + 0.0230·12-s + (−1.10 − 0.929i)13-s + (−0.408 + 0.767i)14-s + (0.0124 + 0.0343i)15-s + (0.654 + 0.238i)16-s + (0.275 − 0.758i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 133 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.130 + 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 133 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.130 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(133\)    =    \(7 \cdot 19\)
Sign: $-0.130 + 0.991i$
Analytic conductor: \(1.06201\)
Root analytic conductor: \(1.03053\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{133} (10, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 133,\ (\ :1/2),\ -0.130 + 0.991i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.567807 - 0.647376i\)
\(L(\frac12)\) \(\approx\) \(0.567807 - 0.647376i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (0.990 + 2.45i)T \)
19 \( 1 + (1.35 - 4.14i)T \)
good2 \( 1 + (0.790 + 0.942i)T + (-0.347 + 1.96i)T^{2} \)
3 \( 1 + (-0.0284 - 0.161i)T + (-2.81 + 1.02i)T^{2} \)
5 \( 1 + (-0.850 + 0.150i)T + (4.69 - 1.71i)T^{2} \)
11 \( 1 - 1.91T + 11T^{2} \)
13 \( 1 + (3.99 + 3.35i)T + (2.25 + 12.8i)T^{2} \)
17 \( 1 + (-1.13 + 3.12i)T + (-13.0 - 10.9i)T^{2} \)
23 \( 1 + (-6.40 - 5.37i)T + (3.99 + 22.6i)T^{2} \)
29 \( 1 + (-5.72 - 1.00i)T + (27.2 + 9.91i)T^{2} \)
31 \( 1 + (-3.98 - 6.90i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-6.34 + 3.66i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (2.91 - 2.44i)T + (7.11 - 40.3i)T^{2} \)
43 \( 1 + (7.28 + 2.64i)T + (32.9 + 27.6i)T^{2} \)
47 \( 1 + (-2.57 - 7.08i)T + (-36.0 + 30.2i)T^{2} \)
53 \( 1 + (0.0763 + 0.0134i)T + (49.8 + 18.1i)T^{2} \)
59 \( 1 + (14.3 + 5.22i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (-5.19 + 6.18i)T + (-10.5 - 60.0i)T^{2} \)
67 \( 1 + (-0.248 + 0.296i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (1.73 - 4.76i)T + (-54.3 - 45.6i)T^{2} \)
73 \( 1 + (0.264 - 0.0465i)T + (68.5 - 24.9i)T^{2} \)
79 \( 1 + (-4.31 + 11.8i)T + (-60.5 - 50.7i)T^{2} \)
83 \( 1 + (-1.26 - 0.730i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 + (0.101 - 0.577i)T + (-83.6 - 30.4i)T^{2} \)
97 \( 1 + (0.233 + 1.32i)T + (-91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.79965390458888680264564652362, −11.89292036231381542824137582787, −10.60401898797638415396505376799, −9.907762610539450046762993133347, −9.350398059067801320813917409519, −7.65880664521986832547100427020, −6.49593806353120575008512833835, −4.98848166177141401832552077236, −3.22867693129922796033313959570, −1.22872827346547182144329413059, 2.51923380084223687787619336431, 4.52044482192329505200829147488, 6.30584607830949096830702616677, 6.96938022929424039428778143396, 8.280058975165811635823158498516, 9.262895978559690043760307402320, 10.02710741227788421745164428713, 11.73129680653271605530664328806, 12.49490075238974148368238188671, 13.44031543136381963161714842402

Graph of the $Z$-function along the critical line