Properties

Label 2-133-133.10-c1-0-3
Degree $2$
Conductor $133$
Sign $0.996 + 0.0874i$
Analytic cond. $1.06201$
Root an. cond. $1.03053$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.373 − 0.445i)2-s + (0.289 + 1.64i)3-s + (0.288 − 1.63i)4-s + (0.294 − 0.0519i)5-s + (0.622 − 0.741i)6-s + (2.63 + 0.241i)7-s + (−1.84 + 1.06i)8-s + (0.211 − 0.0769i)9-s + (−0.133 − 0.111i)10-s − 0.329·11-s + 2.76·12-s + (2.46 + 2.06i)13-s + (−0.876 − 1.26i)14-s + (0.170 + 0.468i)15-s + (−1.96 − 0.713i)16-s + (−0.871 + 2.39i)17-s + ⋯
L(s)  = 1  + (−0.264 − 0.314i)2-s + (0.167 + 0.947i)3-s + (0.144 − 0.818i)4-s + (0.131 − 0.0232i)5-s + (0.254 − 0.302i)6-s + (0.995 + 0.0911i)7-s + (−0.651 + 0.376i)8-s + (0.0704 − 0.0256i)9-s + (−0.0421 − 0.0353i)10-s − 0.0992·11-s + 0.799·12-s + (0.684 + 0.574i)13-s + (−0.234 − 0.337i)14-s + (0.0440 + 0.120i)15-s + (−0.490 − 0.178i)16-s + (−0.211 + 0.580i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 133 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0874i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 133 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 + 0.0874i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(133\)    =    \(7 \cdot 19\)
Sign: $0.996 + 0.0874i$
Analytic conductor: \(1.06201\)
Root analytic conductor: \(1.03053\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{133} (10, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 133,\ (\ :1/2),\ 0.996 + 0.0874i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.11486 - 0.0488200i\)
\(L(\frac12)\) \(\approx\) \(1.11486 - 0.0488200i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (-2.63 - 0.241i)T \)
19 \( 1 + (0.878 + 4.26i)T \)
good2 \( 1 + (0.373 + 0.445i)T + (-0.347 + 1.96i)T^{2} \)
3 \( 1 + (-0.289 - 1.64i)T + (-2.81 + 1.02i)T^{2} \)
5 \( 1 + (-0.294 + 0.0519i)T + (4.69 - 1.71i)T^{2} \)
11 \( 1 + 0.329T + 11T^{2} \)
13 \( 1 + (-2.46 - 2.06i)T + (2.25 + 12.8i)T^{2} \)
17 \( 1 + (0.871 - 2.39i)T + (-13.0 - 10.9i)T^{2} \)
23 \( 1 + (5.92 + 4.97i)T + (3.99 + 22.6i)T^{2} \)
29 \( 1 + (2.99 + 0.528i)T + (27.2 + 9.91i)T^{2} \)
31 \( 1 + (0.899 + 1.55i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (2.89 - 1.67i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (6.51 - 5.46i)T + (7.11 - 40.3i)T^{2} \)
43 \( 1 + (2.53 + 0.921i)T + (32.9 + 27.6i)T^{2} \)
47 \( 1 + (0.564 + 1.55i)T + (-36.0 + 30.2i)T^{2} \)
53 \( 1 + (-11.2 - 1.98i)T + (49.8 + 18.1i)T^{2} \)
59 \( 1 + (5.11 + 1.86i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (-7.30 + 8.70i)T + (-10.5 - 60.0i)T^{2} \)
67 \( 1 + (-4.63 + 5.51i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (2.28 - 6.27i)T + (-54.3 - 45.6i)T^{2} \)
73 \( 1 + (-4.75 + 0.839i)T + (68.5 - 24.9i)T^{2} \)
79 \( 1 + (-0.421 + 1.15i)T + (-60.5 - 50.7i)T^{2} \)
83 \( 1 + (1.68 + 0.975i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 + (-0.262 + 1.48i)T + (-83.6 - 30.4i)T^{2} \)
97 \( 1 + (-1.82 - 10.3i)T + (-91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.44999880919487157244592034347, −11.82526589438376516073191520739, −10.97900701287841942797440668886, −10.22433532427098927204097785904, −9.262101921408017243587440270611, −8.339940807490081881557628618263, −6.54014768970207285806214873914, −5.21458768628660489609480801765, −4.08566508613037794803738488411, −1.92668041874331732331267200187, 1.94988089118351894346681196884, 3.85354371744326186834575589254, 5.75604807831439544916545018088, 7.13796085214644061043059460465, 7.87856707200714009217676589221, 8.577013467255728226852399484937, 10.15503348712944128708992984282, 11.55150041174908654068075465930, 12.25908288824342777063437029086, 13.33536476699161561069809970780

Graph of the $Z$-function along the critical line